BOBBY JINDAL GOVERNOR

HAROLD LEGGETT, PH.D. SECRETARY

State of Louisiana

DEPARTMENT OF ENVIRONMENTAL QUALITY ENVIRONMENTAL SERVICES OCT 1 4 2009

CERTIFIED MAIL 7009 1680 0001 7227 2271 -RETURN RECEIPT REQUESTED

File No.: LA0003301

Al No.: 1409

Activity No.: PER20060028

Ms. Sharon Cole, Site Director The Dow Chemical Company Louisiana Operations P.O. Box 150 Plaquemine, Louisiana 70765-0150

RE: Louisiana Pollutant Discharge Elimination System (LPDES) permit to discharge treated process wastewaters, utility wastewaters, sanitary wastewater, and stormwater runoff to the Mississippi River (Outfalls 001 and 002) from an existing organic chemical manufacturing plant located at 21255 Louisiana Highway 1 in Plaquemine, Iberville and West Baton Rouge Parishes.

Dear Ms. Cole:

The Louisiana Department of Environmental Quality (LDEQ)/Office of Environmental Services (OES) has received and evaluated comments submitted by The Dow Chemical Company, Louisiana Operations in response to the public notice published in the Office of Environmental Services Public Notice Mailing List on August 4, 2009 and the WEST SIDE JOURNAL of Port Allen and the PLAQUEMINE POST-SOUTH on August 6, 2009. The Office's response to comments submitted by The Dow Chemical Company, Louisiana Operations are summarized below. No comments have been received from the general public.

Comment No. 1

Comment: Part 1 - pages 1 & 2 Effective Date of the Permit

Dow noted in the fact sheet that the effective date will be 120 days beyond the issuance date of the final permit to allow for implementation. Dow requests that this provision be recognized in the final permit. The implementation of the revised permit as proposed is anticipated to include revision of operating procedures, operator training and physical modification of the current outfall configuration.

Response: The title page in the final permit will reflect an effective date of February 1, 2010.

The Dow Chemical Company Louisiana Operations RE: LA0003301, AI No. 1409

Page 2

Comment No. 2

Comment:

Part 1 – page 2, Final Outfall 001

As currently required, Dow requests composite sampling for the parameter Hexachlorobenzene at this outfall.

Response:

This Office agrees with this request. The final permit will reflect this change.

Comment No. 3

Comment:

Part I - page 8, Internal Outfall 111 footnote 1, and Fact sheet page 14

The criteria for reduction of chloroform monitoring is inconsistent in that the chloroform monitoring frequency is set at 1/quarter but it was stated (in the footnote) that one year of data needed to trigger the reduction would contain 12 values. Dow requests that this provision be revised to reflect that one year of data for this monitoring frequency is four data values.

Response:

This Office agrees with this request. The final permit will reflect this change.

Comment No. 4

Comment:

Part 1 – page 14, Internal Outfall 301 Phase II

Dow noted that the Oil and Grease limitation was not continued from Phase I to Phase

Response:

The final permit has been changed to include the Oil and Grease limitation in Phase II.

Comment No. 5

Comment:

Part 1 – page 26, Internal Outfall 511

Internal Outfall 511 is the process wastewater discharge for the Plaquemine Vector Resins Plant. Dow previously proposed the application of only OCPSF Subpart D (414.40 Thermoplastic Resins) for the Best Practicable Technology (BPT) limit calculations. Dow has since determined that the OCPSF Guidelines Subparts D and H (414.80 Specialty Organic Chemicals) are the appropriate subpart categories for the manufacturing operations at this facility. Based on the polymer manufacturing rates, the appropriate proportions are 45% for OCPSF Subpart D (Styrene-Butadiene) and 55% for OCPSF Subpart H (Styrene-Isoprene). The proposed BOD and TSS limits

The Dow Chemical Company Louisiana Operations

RE: LA0003301, AI No. 1409

Page 3

based on these proportions are included in Attachment 1. This table replaces TABLE 4-25 in the original applications documents.

Response:

This Office agrees with this request. Based on the information provided above, the basis of the BOD₅ and TSS limits at this outfall has been changed to reflect the technology-based limits cited at 40 CFR 414, Subparts D and H in accordance with the permittee's current status of operations, taking into account the specified fractions allotted for each subpart (see Attachment A for the calculation of these technology-based limits). This comment does result in a change to the final permit.

Comment No. 6

Comment:

Part 1 – page 26, Internal Outfall 511

As previously discussed, Dow requests a monitoring frequency of 1/Week for flow at this outfall.

Response:

This Office agrees with this request. During a telephone conversation on or about August 31, 2009, the permittee requested a monitoring frequency reduction for flow from once per day to once per week since the monitoring frequency for the OCPSF conventional parameters has been reduced from once per month to once per quarter. This comment does result in a change to the final permit.

Comment No. 7

Comment:

Part 1 - page 28, Internal Outfall 521

As previously discussed, Dow requests a monitoring frequency of 1/Week for flow at this outfall.

Response:

This Office agrees with this request. During a telephone conversation on or about August 31, 2009, the permittee requested a monitoring frequency reduction for flow from once per day to once per week since the monitoring frequency for the OCPSF conventional parameters has been reduced from once per month to once per quarter. This comment does result in a change to the final permit.

Comment No. 8

Comment:

Part 1 - page 32, Internal Outfall 541

The Daily Maximum and Monthly Average diethyl phthalate limits for Internal Outfall 541 appear to be transposed in the draft permit. The limit values need to be reversed.

Response:

This Office agrees with this request. The final permit will reflect this change.

The Dow Chemical Company Louisiana Operations RE: LA0003301, AI No. 1409

Page 4

Comment No. 9

Comment:

Part 1 - page 40, Internal Outfall 631 Phase I

The Daily Maximum and Monthly Average copper limits for Internal Outfall 631 appear to be transposed in the draft permit. The limit values need to be reversed.

Response:

This Office agrees with this request. The final permit will reflect this change.

Comment No. 10

Comment:

Part 2 – Section Q 1, page 20, Q. 316(b) Phase II Rule Requirements

Dow noted that the permit requires agency approval of the proposed study plan. Dow requests that adequate time be provided for agency review and approval of the plan while maintaining sufficient time for Dow to implement the plan. Therefore Dow requests that the completion of the study plan be specified as three years following agency approval.

Response:

This Office does not agree with this request. The Section 316(b) language was jointly developed by EPA and LDEQ for the power plants. This language was also determined to be appropriate for existing major manufacturing facilities on a case-by-case basis. Therefore, for purposes of consistency, the LDEQ has decided that the language established in the draft permit will remain as proposed. LDEQ is aware of the permittee's concerns and will coordinate will all parties involved to ensure that the plan is reviewed and approved in a timely manner. This comment does not result in a change to the final permit.

Comment No. 11

Comment:

Outfall Locations

Dow noted that the latitude and longitude designations in the draft permit are slightly different (seconds) than the values Dow submitted in the application. Dow does not believe that these minor differences are significant. The outfalls affected include: Final Outfalls 001 and 002, and Internal Outfalls 101, 121, 201, 401, 511, 521, 531, 611, 621, 631, 641, and 651.

Response:

The permittee's comment is noted. The outfall coordinates included in the draft permit for the outfalls referenced above were determined using the ARC View Mapping System maintained by the LDEQ Geographic Information Systems (GIS) Center. The ARC View Mapping System was previously used to serve the agency's mapping

The Dow Chemical Company Louisiana Operations RE: LA0003301, AI No. 1409 Page 5

requirements for purposes of permit development. This mapping system is no longer used and has been replaced by the LDEQ Make-A-Map System.

Please be advised that the following changes have been made to the final permit:

- 1. In Part I, the units under the "Discharge Limitations" heading was changed from "lb/day" to "lbs/day" and "uq/l" to "ug/l".
- 2. The footnotes for Outfall 001 in Part I of the permit were re-arranged to flow in chronological order on the limitation pages.
- The temperature required to maintain composite samples (aliquots) in Part II.F.2.b has been changed from 4 Degrees Centigrade to 6 Degrees Centigrade based on updates made to 40 CFR Part 136.
- 4. The heading (Permit Reopener Clause) for Part II.K was inadvertently included in this section and will be removed from the final permit.
- 5. The standard DMR language in Part II.O has been updated to add wording pertaining to the submittal of electronic DMRs.

Pursuant to the Clean Water Act (33 U.S.C. 1251 et seq.) and the Louisiana Environmental Quality Act (La. R.S. 30:2001, et seq.), the attached LPDES permit has been issued. Provisions of this permit may be appealed in writing pursuant to La. R.S. 2024(A) within 30 days from receipt of the permit. A request for hearing must be sent to the following:

Louisiana Department of Environmental Quality Office of the Secretary Attention: Hearings Clerk, Legal Division Post Office Box 4302 Baton Rouge, Louisiana 70821-4302

Upon the effective date, this permit shall replace the previously effective LPDES permits LA0003301, LA0116602, and LAG670070.

Monitoring results should be reported on a Discharge Monitoring Report (DMR) form per the schedule specified. A copy of the form to be used is attached for your convenience.

Pursuant to LAC 33:IX.1309.I, LAC 33:IX.6509.A.1, and LAC 33:I.1701, you must pay any outstanding fees to the Department. Therefore, you are encouraged to verify your facility's fee status by contacting LDEQ's Office of Management and Finance, Financial Services Division at (225) 219-3863. Any outstanding fees must be remitted via a check to the Louisiana Department of Environmental Quality within thirty (30) days after the effective date of your permit. Failure to

The Dow Chemical Company Louisiana Operations

RE: LA0003301, AI No. 1409

Page 6

pay the full amount due in the manner and time prescribed could result in applicable enforcement actions as prescribed in the Environmental Quality Act, including, but not limited to revocation or suspension of the applicable permit, and/or a civil penalty against you.

For sanitary treatment plants, the plans and specifications must be approved by the Department of Health and Hospitals, Office of Public Health, Post Office Box 4489, Baton Rouge, Louisiana 70821-4489, (225) 342-7395.

Should you have any questions concerning any part of the permit, please feel free to contact Brian Muller, USEPA Region 6, Water Quality Protection Division, 1445 Ross Avenue, Dallas, Texas 75202 or by telephone at (214) 665-7167. You may also contact Sonja Loyd, LDEQ, Office of Environmental Services, at the address on the bottom of the cover page or by telephone at (225) 219-3090. To ensure that all correspondence regarding this facility is properly filed into the Department's Electronic Document Management System, you must reference your Agency Interest number 1409 and the LPDES permit number LA0003301 on all future correspondence to this Department.

Sincerely,

Cheryl Sonnier Nolan Assistant Secretary

sl

Attachment(s): final permit, DMR, response to comments, and Attachment A

c: IO-W File

ec: Sonja Loyd
Jenniffer Sheppard
Water Permits Division

Brian Mueller (6WQ-PP) U.S. EPA, Region 6 mueller.brian@epamail.epa.gov

Evelyn Rosborough (6WQ-CA) U.S. EPA, Region 6

Public Health Chief Engineer Office of Public Health Department of Health and Hospitals The Dow Chemical Company Louisiana Operations RE: LA0003301, Al No. 1409 Page 7

> Permit Compliance Unit Capital Regional Office Office of Environmental Compliance

Christine Baldridge
The Dow Chemical Company
cebaldridge@dow.com

Ed Keough
The Dow Chemical Company
keougheb@dow.com

PERMITTEE NAME/ADORESS (Include Facility Name/Location if different)

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

(37-19) (2-16)

NAME						l.	2	121.12					
ADDRESS						I							
		Control of the contro	ija d	PERVIT MUNBER	0.0	L	DISCHAR	DISCHARGE NUMBER	I	Check Appropriate Box:		Stant Football	
						.}]				tone or a sound
***************************************					MONITOR	MONITORING PERIOD	ROD			C March March 19 Co.		;	
FACILITY			YEAR	R MO	DAY	-	YEAR	OW) AV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in our	¢1	
LOCATION			FROM	-		P P			T	<i>c</i>	•		
			(2021)	(1) (22-23)	(24.25)	J	(25-27)	(25-23)	(30-31)	TO KAND HELD	ಸಂಗತ ಶಿಲೆಯ	ACTE: Kead instructions before completing this form	Готт
PARAMETER	\ _	(3 Cert Only) QUANT	ITITY OR LOADING		(4 Card Only)		PO YTUALO	QUALITY OR COMOENTRATION	NOTA		9	VOIATE SCHOOL	
(25-37)	X	(46-53)	(54-67)		(38-45)		(46-53)		(54-61)			50	SAMPLE TYPE
and the state of t	<u>/</u>	AVERAGE	MUMIXAM	UNITS	MUMINIM	-	AVERAGE	iii	MAXIMUM	STINII	(K2.67)	010 F 1010	() () ()
	SAMPLE MEASUREMENT)	Com and	(90-0)	(01.50)
	PERMIT REQUIREMENT:									188			
	SAMPLE					-							
	PERMIT									180			
	SAMPLE												
	PERMIT									1882			
	SAMPLE MEASUREMENT			escario.		ii.				8			
	PERMIT REQUIREMENT			T									
,	SAMPLE MEASUREMENT												
	PERMIT			T						1			
	SAMPLE MEASUREMENT											ž	
	PERMIT REGUIREMENT.									1880			
	SAMPLE MEASUREMENT												
	PERMIT REQUIREMENT												
NAME/TITE PRINCIPAL EXECUTIVE OFFICER		I CERTIFY UNDER PRINLITY OF LAW THAT THIS DOCUMENT AND ALL ATACHMENTS WERE PREPARED UNDER MY DIRECTION OR SUBERVISION ME ACCORDANCE WITH A SYSTEM DESIGNED TO ASSURE THAT OURLINED PERSONNEL PROPERLY SAFIER AND	THAT THIS DOCUM TION OR SUPERVIS FOURLIFIED PERSO	MENT AND ALL HON IN ACCOUNTINES	L ATTACHMENT RDANCE WITH ILY GATHER AN	হৈ ৰ ত				TELEPHONE		C	DATE
	EVALUATE TH PERSONS WH FOR GATHERS	E INFORMATION SUBMIN 10 MANAGE THE SYSTE NG THE INFORMATION,	TED. BASED ON M. M. OR THOSE PER! THE INFORMATION S	Y INQUIRY OF SONS DIRECTL	THE PERSON C Y RESPONSIBLE TO THE BEST OF	C at P							
TYPED OR PRINTED	THERE ARE STATE POSSIBLE	AGE AND BELIEF, TRUE, IGNIFICANT PENALTIES I	ACCURATE, AND C FOR SUBMITTING FA DAMENT FOR KNOW	OMPLETE 17 4.SE INFORMATION	AM AWARE THU TION, MOLUDIN		TURE OF PE	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OF ALTHORIZED ADENT	ECUTIVE AREA	A 11	au	, i	
COMMENT AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here	TIONS (Perense a	# attachments here!		50.00	ż			2		_	מכני		NO DAY

PAGE

PERMIT NUMBER LA0003301 Al No.: 1409

office of environmental services Water Discharge Permit

Pursuant to the Clean Water Act, as amended (33 U.S.C. 1251 et seq.), and the Louisiana Environmental Quality Act, as amended (La. R. S. 30:2001 et seq.), rules and regulations effective or promulgated under the authority of said Acts, and in reliance on statements and representations heretofore made in the application, a Louisiana Pollutant Discharge Elimination System permit is issued authorizing

The Dow Chemical Company Louisiana Operations P.O. Box 150 Plaquemine, Louisiana 70765-0150

Type Facility:

organic chemical manufacturing plant

Location:

21255 Louisiana Highway 1 in Plaquemine

Iberville/West Baton Rouge Parishes

Receiving Waters:

Mississippi River (Outfalls 001 and 002) - Subsegment No. 070301

to discharge in accordance with effluent limitations, monitoring requirements, and other conditions set forth in Parts I, II, and III attached hereto.

This permit shall become effective on DI February 2010

This permit and the authorization to discharge shall expire five (5) years from the effective date of the permit.

Issued on 13 CCOPCE

Cheryl Sonnier Nolan Assistant Secretary

Page 2 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning the effective date and lasting through the explication date the permittee is authorized to discharge from:

Outfall 001 (Final) (estimated total outfall flow is 597 MGD), this final outfall consists of the continuous discharge of CWR Canal A to the Mississippi River. CWR Canal A receives flow from Canals B, C, D, E, and F, and includes the wastewaters described in all internal outfalls within the manufacturing areas, as well as, stormwater runoff, once through cooling water, and utility wastewater flows (i.e., hydrostatic test water, hydroblast water, deluge test water, fire hydrant test water, condensate, utility discharge from turnaround activities, de-ionized (DI) water, air conditioner condensate, cooling tower blowdown, regeneration streams, water treatment discharges, steam traps, and clean equipment/slab wash down).

Effluent Characteristic			Discharge	Limitations Other Units		Monitoring Rec	nuirements
	CTORET				INLESS STATE		6 5
CONVENTIONAL AND NONCONVENTIONAL	STORET Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
Flow-MGD	50050	. Report	Report	•••		Continuous	Pump Curve (*1)
pH Range Excursions (Continuous Monitoring), Number of Events >60 Minutes	82581		0 (*2)	•••		Continuous	Recorder
pH Range Excursions (Continuous Monitoring), Monthly Total Accumulated Time in Minutes	82582		446 (*2)			Continuous	Recorder
pH Minimum/Maximum Values (Standard Units)	00400	***	***	Report (*2) (Min)	Report (*2) (Max)	Continuous	Recorder
Chlorides	82209	•	•	Report	Report	1/Year	Grab
Volatile Compounds							
Benzene .	34030	•	-	Report	Report	1/Year	Grab
Chloroform	32106	•	-	Report	Report	1/Year	Grab
1,2-Dichloropropane	34541		*	Report	Report	1/Year	Grab
Methylene Chloride	34423	~		Report	Report	1/Year	Grab
Tetrachloroethylene	34475	-		Report	Report	1/Year	Grab
1,1,2,2-Tetrachloroethane	34516	•	-	Report	Report	1/Year	Grab
Trichloroethylene	39180	4	_	Report	Report	1/Year	Grab
Vinyl Chloride	39175	•	•	Report	Report	1/Year	Grab
Base Neutral Compounds						4.04	
Acenaphthene	34205	•	-	Report	Report	1/Year	Grab
Acenaphthylene	34200	•	•	Report	Report	1/Year	Grab
Anthracene	34220	•	•	Report	Report	1/Year	Grab
Benzo(a)anthracene	34526	•	•	Report	Report	1/Year	Grab
Benzo(a)pyrene	34247	•	•	Report	Report	1/Year	Grab
3,4-Benzofluoranthene	34230	•	-	Report	Report	1/Year	Grab
Benzo(k)fluoranthene	34242		•	Report	Report	1/Year	Grab
Chrysene	34320	-	•	Report	Report	1/Year	Grab

Page 3 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Outfail 001 continued)

Effluent Charact	eristic		Discharge	Limitations Othe	er Units	Monitoring	Requirements
	Storet		y, unless ited) Daily		less stated) Daily	Measurement	
	Code	Average	Maximum	Average	Maximum	Frequency	Sample Type
Fluoranthene	34376	_	•	Report	Report	1/Year	Grab
Flourene	34381	-	•	Report	Report	1/Year	Grab
Hexachlorobenzene	39700	0.5	1.18			1/Week	24-hr. Composite
Hexachlorobutadiene	34391	•	•	Report	Report	1/Year	Grab
Naphthalene	34696	•		Report	Report	1/Year	Grab
Phenanthrene	34461	-	•	Report	Report	1/Year	Grab
Pyrene	34469	•		Report	Report	1/Year	Grab

WHOLE EFFLUENT TOXICITY TESTING (ACUTE) (*3)

(Percent %, UNLESS STATED)

Parameter	Storet Code (*4)	Monthly Average Minimum	48-Hour Minimum	Measurement Frequency (*5)	Sample Type
NOEC, Pass/Fail [0/1], Lethality, Static Renewal, 48-Hour Acute <u>Pimephales promelas</u>	TEM6C	Report	Report	1/quarter	24-hr. Composite
NOEC, Value [%], Lethality, Static Renewal, 48-Hour Acute Pimenhales prometas	том6С	Report	Report	1/quarter	24-hr. Composite
NOEC, Value [%], Coefficient of Variation, Static Renewal, 48-Hour Acute, Pimephales promeias	TQM6C	Report	Report	1/quarter	24-hr. Composite
NOEC, Pass/Fall [0/1], Lethality, Static Renewal, 48-Hour Acute Daphnia pulex	TEM3D	Report	Report	1/quarter	24-hr. Composite
NOEC, Value [%], Lethality, Static Renewal, 48-Hour Acute <u>Daphnia pulex</u>	TOM3D	Report	Report	I/quarter	24-hr. Composite
NOEC, Value [%], Coefficient of Variation, Static Renewal, 48-Hour Acute, Daphnia pulex	ТОМЗО	Report	Report	1/quarter	24-hr. Composite

There shall be no discharge of floating solids or visible foam in other than trace amounts.

Part I

Permit No. Draft LA0003301

Page 4 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Outfall 001 continued)

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Outfall 001, at the point of discharge from the Intake to the Cooling Water Return pump station prior to pumping the cooling water over the levee and into the Mississippi River at Latitude 30°18'35", Longitude 91°13'48".

FOOTNOTE(S):

- (*1) The daily flow is estimated by using best engineering judgment.
- (*2) The pH shall be within the range of 6.0 9.0 standard units at all times subject to the continuous monitoring pH range excursion provisions at Part II.I.
- (*3) See Part II.P for biomonitoring requirements.
- (*4) Given test method or other, as approved at 40 CFR Part 136.
- (*5) Additional toxicity samples may be required upon usage of chlorine and/or biofouling agents if the quarterly sample was not conducted during these conditions.

Part I

Permit No. Draft LA0003301

Page 5 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 101 (112) (Canal B) (estimated total outfall flow is 106 MGD), this internal outfall consists of the continuous discharge of cooling water returns, fire deluge water, utility wastewater, non-process area stormwater, discharges from Internal Outfalls 121 (931) and 111 (1081), and discharges from neighboring company PolyOne. This internal outfall discharges to CWR Canal A and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic			D\scharge	Limitations		Monitoring Re	equirements
				Othe	r Units		
		(lbs/day, un	less stated)	(ug/l, uni	less stated)		
Conventional/	Storet	Monthly	Daily	Monthly	Daily	Measurement	
Nonconventional	Code	Average	Maximum	Average	Maximum	Frequency	Sample Type
Nonconventional							
Flow - MGD	50050	Report	Report	-	-	1/Week	Estimate
TOC - mg/l	00680	-	-	-	50	1/Week	Grab
Oil and Grease-mg/l	03582	-	_	•	15	1/Week	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 101 (112), at the point of discharge from the southern end of CWR Canal B, prior to mixing with other waters in CWR Canal A at Latitude 30°18'43", Longitude 91°13'59".

Page 6 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 111 (1081) (Poly A) (estimated total outfall flow is 2.0 MGD), this internal outfall is a virtual outfall consisting of the continuous discharge of OCPSF process wastewater and OCPSF process area stormwater, once through cooling water, and utility wastewater from the Polyethylene A Plant. The sampling locations discharge to CWR Canal B, through Internal Outfall 101 (112), then to Outfall 001.

Effluent Characterist	ic		<u>Discharge Li</u>	mitations		Monitoring Requ	irements
				Othe	r Units		
Conventional/ Nonconventional Conventional	Storet Code	(lbs/day, u Monthly Average	nless stated) Daily Maximum	(ug/l, unle Monthly Average	ss stated) Daily Maximum	Measurement Frequency	Sample Type
BOD ₅	00310	156	371	v	-	1/Quarter	Grab
TSS	00530	215	618		-	1/Quarter	Grab
Nonconventional							
Flow - MGD	50050	Report	Report	*	•	1/Week	Estimate
Volatile Compounds							
Acrylonitrile	34215	0.35	0.87	-	-	1/Year	Grab
Benzene	34030	0.21	0.5	•	-	1/Year	Grab
Carbon Tetrachloride	32102	0.53	1.42	•	-	1/Year	Grab
Chlorobenzene	34301	0.53	1,42		•	1/Year	Grab
Chloroethane	85811	0.41	1.1	-		1/Year	Grab
Chloroform (*1)	32106	1.85	5.38	-	-	1/Quarter	Grab
1,1-Dichloroethane	34496	0.08	0.22	. .	•	1/Year	Grab
1,2-Dichloroethane 1,1-	321.03	0.67	2.14	•	٠	1/Year	Grab
Dichloroethylene	34501	0.08	0.22		-	1/Year	Grab
1,2-Dichloropropane .	34541	0.73	2.97	-	~	1/Year	Grab
Dichloropropylene	34561	0.73	2,97		_	1/Year	Grab
Ethylbenzene	34371	0.53	1.42	-	-	1/Year	Grab
Methyl Chloride	34418	0.41	1.1	-	*	1/Year	Grab
Methylene Chloride	34423	0.14	0.64	_		1/Year	Grab
Tetrachloroethylene	34475	0.19	0.61	-		1/Year	Grab
Toluene	34010	0.11	0.28		_	1/Year	Grab
1,2-trans- Dichloroethylene	34546	0.09	0.25	•	-	1/Year	Grab
1,1,1- Trichloroethane	34506	80.0	0.22		^	1/Year	Grab
1,1,2- Trichloroethane	34511	0.12	0.48		v	1/Year	Grab
Trichloroethylene	39180	0.1	0.26	•		1/Year	Grab
Vinyl Chloride	39175	0.36	0.64	-	-	1/Year	Grab
Acid Compounds			•				
2,4-Dimethylphenol	34606	0.07	0.18	-	•	1/Year	Grab

Part I Permit No. Draft LA0003301

Page 7 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 111 continued)

Effluent Charact	teristic		Discharge	Limitations		Monitoring Re	avirements
					her Units		
	Storet Code	(lbs/day, u Monthly Average	niess stated) Daily Maximum	(ug/l, t Monthly Average	inless stated) Daily Maximum	Measurement Frequency	Sample Type
4,6-Dinitro-o-cresol	34657	0.29	1.04		-	1/Year	Grab
2,4-Dinitrophenol	34616	4.51	16		-	1/Year	Grab
2-Nitrophenol	34591	0.24	0.86	-	_	1/Year	Grab
4-Nitrophenol	34646	0.61	2.15	-		1/Year	Grab
Phenoi	34694	0.07	0.18	•	ü	1/Year	Grab
Base Neutral Comp	ounds						
Acenaphthene	34205	0.07	0.18	-	-	1/Year	Grab
Açenaphthylene	34200	0.07	0.18		-	1/Year	Grab
Anthracene	34220	0.07	0.18		-	1/Year	Grab
Benzo(a)anthracene	34526	0.07	0.18	-	. •	1/Year	Grab
Benzo(a)pyrene	34247	0.08	0.18	-	•	1/Year	Grab
3,4- Benzofluoranthene	34230	0.08	0.18	_		1/Year	Grab
Benzo(k)fluoranthene		0.07	0.18	_	_	1/Year	Grab
Bis(2-ethylhexyl)	37274	0.07	0.10			17 (00)	
phthalate	39100	0.36	0.96	_	_	1/Year	Grab
Chrysene	34320	0.07	0.18	-	-	1/Year	Grab
1,2-Dichlorobenzene	34536	0.73	2.97		•	1/Year	Grab
1,3-Dichlorobenzene	34566	0.53	1.42	-	-	1/Year	Grab
1,4-Dichlorobenzene	34571	0.53	1.42		•	1/Year	Grab
Diethyl phthalate	34336	0.17	0.42	•	•	1/Year	Grab
Dimethyl phthalate	34341	0.07	0.18	•	*	1/Year	Grab
Di-n-butyl phthalate	39110	0.08	0.16	•	-	1/Year	Grab
Fluoranthene	34376	0.08	0.2	-	-	1/Year	Grab
Fluorene	34381	0.07	0.18	•	•	1/Year	Grab
Hexachlorobenzene	39700	0.73	2.97	•	•	1/Year	Grab
Hexachlorobutadiene	34391	0.53	1.42	-	-	1/Year	Grab
Hexachloroethane	34396	0.73	2.97	•	•	1/Year	Grab
Naphthalene	34696	0.07	0.18	-	•	1/Year	Grab
Nitrobenzene	34447	8.36	23.9	•	-	1/Year	Grab
Phenanthrene	34461	0.07	0.18	-	•	1/Year	Grab
Pyrene	34469	80.0	0.18	•	•	1/Year	' Grab
1,2,4- Trichlorobenzene	34551	0.73	2.97	•	-	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 111 (1081), the summation of the flows from Sampling Locations 1031, 1041, 1051, 1061, and 1071. Samples shall be flow weighted by sample location. Internal Outfall consists of five sampling locations. Sampling Location 1031 (North side at overflow weir), Sampling Location 1041 (Northeast side at overflow weir), Sampling Location 1051 (Middle of block at swimming pool overflow weir), Sampling Location 1061 (Southeast corner of block in concrete ditch), and Sampling Location 1071 (Middle of block at SK-120G skimmer). All are sampled before discharge from the Polyethylene A Plant in Block 8, prior to mixing with other waters in CWR Canal 8. The virtual outfall coordinates are Latitude 30°18'S8", Longitude 91°13'38".

Page 8 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 111 continued)

FOOTNOTE(S):

(*1) The monitoring frequency for chloroform shall be reduced from 1/quarter to 1/year If the permittee submits one year of sample data (four consecutive samples) which reflect discharges that meet the permit limit. The permittee shall include as a statement in the comments section on the first DMR submitted following fulfillment of this provision indicating that the data requirement has been satisfied. The permittee shall submit the data verifying compliance with the permit limits within six (6) months following the monitoring frequency reduction.

Page 9 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 121 (931) (Poly B) (estimated total outfall flow is 0.362 MGD), this internal outfall consists of the continuous discharge of OCPSF process wastewater, OCPSF process area stormwater, once through cooling water, and utility wastewater from the Polyethylene B Plant. This internal outfall discharges to CWR Canal B, through Internal Outfall 101 (112), and then to Outfall 001

Effluent Characteristic			Discharge	Limitations		Monitoring Res	uirements
				Othe	r Units		
Conventional/ Nonconventional Conventional	Storet Code	(lbs/day, u Monthly Average	niess stated) Daily Maximum	(ug/l, un Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type
BOD ₅	00310	63	137		-	1/Quarter	Grab
TSS	00530	88	237	•	-	1/Quarter	Grab
Nonconventional							
Flow - MGD	50050	Report	Report	•	*	1/Week	Estimate
Volatile Compounds	34215	0.14	o ar	_		1 Nan-	ρ <u>ι</u> _ <u>1</u> _
Acrylonitrile	34215		0.35	•	-	1/Year	Grab
Benzene Carbon Tetrachloride	32102	0.09 0.22	0.2 0.58	•		1/Year	Grab
Chlorobenzene	34301	0.22	0.58			1/Year 1/Year	Grab Grab
Chloroethane	85811	0.17	0.36			1/Year	Grab
Chloroform	32106	0.17	0.49			1/Year	Grab
1,1-Dichloroethane	34496	0.03	0.49	•		1/Year	Grab
1,2-Dichloroethane	32103	0.03	0.09			1/Year	Grab
1,1-Dichloroethylene	34501	0.03	0.09	_	-	1/Year	Grab
1,2-Dichloropropane	34541	0.03	1.21	-	-	1/Year	Grab
1,3-Dichloropropylene	34561	0.3	1.21		, •	1/Year	Grab
Ethylbenzene	34371	0.22	0.58	-		1/Year	Grab
Methyl Chloride	34371 34418	0.22	0.45	•	•	1/Year	Grab
•		,	- •	•	•		
Methylene Chloride	34423	0.06	0.26	•		1/Year	Grab
Tetrachloroethylene	34475	0.08	0.25	•	•	1/Year	Grab
Toluene	34010	0.04	0.11	-	,	1/Year	Grab
1,2-trans- Dichloroethylene	34546	0.04	0.1		-	1/Year	Grab
1,1,1-Trichloroethane	34506	0.03	0.09		-	1/Year	Grab
1,1,2-Trichloroethane	34511	0.05	0.19		-	1/Year	Grab
Trichloroethylene	39180	0.04	0.11		*	1/Year	Grab
Vinyt Chloride	39175	0.15	0.26	-	•	1/Year	Grab
Acid Compounds							
2,4-Dimethylphenol	34606	0.03	0.07		-	1/Year	Grab
4,6-Dinitro-o-cresol	34657	0.12	0.42	-	•	1/Year	Grab

Part 1 Permit No. Draft LA0003301

Page 10 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 121 continued)

Effluent Characteristic			<u>Discharge</u>		er Units	Monitoring Rec	uirements
,	Storet Code	(lbs/day, u Monthly Average	niess stated) Daily Maximum	(ug/l, un Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type
2,4-Dinitrophenol	34616	1.83	6.51	_	-	1/Year	Grab
2-Nitrophenol	34591	0.1	0.35	•	•	1/Year	Grab
4-Nitrophenol	34646	0.25	0.87		•	1/Year	Grab
Phenol	34694	0.03	0.07	-		1/Year	Grab
Base Neutral Compoun	ds						
Acenaphthene	34205	0.03	0.07	•	-	1/Year	Grab
Acenaphthylene	34200	0.03	0.07		-	1/Year	Grab
Anthracene	34220	0.03	0.07	-	•	1/Year	Grab
Benzo(a)anthracene	34526	0.03	0.07	•	_	1/Year	Grab
Benzo(a)pyrene	34247	0.03	0.07		-	1/Year	Grab
3,4-Benzofluoranthene	34230	0.03	0.07	•	•	1/Year	Grab
Benzo(k)fluoranthene	34242	0.03	0.07			1/Year	Grab
Bis(2-ethylhexyl)							
phthalate	39100	0.14	0.39	•	-	1/Year	Grab
Chrysene	34320	0.03	0.07	-	-	1/Year	Grab
1,2-Dichlorobenzene	34536	0.3	1.21	•	-	1/Year	Grab
1,3-Dichlorobenzene	34566	0.22	0.58	•	•	1/Year	Grab
1,4-Dichlorobenzene	34571	0.22	0.58	-	•	1/Year	Grab
Diethyl phthalate	34336	0.07	0.17	•	•	1/Year	Grab
Dimethyl phthalate	34341	0.03	0.07	•	-	1/Year	Grab
Di-n-butyl phthalate	39110	0.03	0.07	-	•	1/Year	Grab
Fluoranthene	34376	0.03	0.08	-	-	1/Year	Grab
Fluorene	34381	0.03	0.07	-	-	1/Year	Grab
Hexachlorobenzene	39700	0.30	1.21		-	1/Year	Grab
Hexachlorobutadiene	34391	0.22	0.58	-	-	1/Year	Grab
Hexachloroethane	34396	0.3	1.21		-	1/Year	Grab
Naphthalene	34696	0.03	0.07	•	-	1/Year	Grab
Nitrobenzene	34447	3.4	9.72	•	-	1/Year	Grab
Phenanthrene	34461	0.03	0.07	*	•	1/Year	Grab
Pyrene	34469	0.03	0.07	-	-	1/Year	Grab
1,2,4-Trichlorobenzene	34551	0.3	1.21	•	-	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 121 (931), this internal outfall consists of two components which discharge separately at the southeast corner of the Polyethylene B Plant, just west of the fence line in Block 9, prior to mixing with other waters in CWR Canal B. Location 121A is sampled at the effluent for pit 7 and 121B is sampled on the north side of the plant at pit 32. The virtual internal outfall coordinates are Latitude 30°19'03", Longitude 91°13'38".

Part 1

Permit No. Draft LA0003301

Page 11 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through cessation of process wastewater discharges from the Ethylene Dichloride manufacturing operations (*1) the permittee is authorized to discharge from:

Internal Outfall 201 (521) (Solvents) (Phase I) (estimated total outfall flow is 2.09 MGD), this internal outfall consists of the continuous discharge of non-categorical process wastewater, once through cooling water, utility wastewater, and non-process area stormwater from the Solvents/EDC I Plant. This internal outfall discharges to CWR Canal A and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic			<u>Discharge</u>	Limitations		Monitoring Rea	uirements
				Othe	er Units		
		(lbs/day, ur	less stated)	(ug/l, un	less stated)		
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
Nonconventional							
Flow - MGD	50050	Report	Report	•	•	1/Week	Estimate
Volatile Compounds							
1,2-Dichloroethane	32103	-	-	-	574	1/Week	Grab
Tetrachloroethylene	34475	-	•	•	164	1/Week	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 201 (521), at the point of discharge from the Solvents/EDC I Plant TTU lined ditch, from a catwalk in the northeast corner of Block 15, prior to mixing with other waters in CWR Canal A at Latitude 30°18′52″, Longitude 91°14′00″.

FOOTNOTE(S):

(*1) The permittee shall notify the Office of Environmental Services, the Office of Environmental Compliance – Permit Compliance Unit, and the Capital Regional Office in writing at least 30 days prior to discharging under the Phase II conditions.

Page 12 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning <u>cessation of process wastewater discharges from the Ethylene Dichloride manufacturing operations</u> and lasting through <u>the expiration date</u> the permittee is authorized to discharge from:

Internal Outfall 201 (521) (Solvents) (Phase II) (estimated total outfall flow is 2.09 MGD), this internal outfall consists of the continuous discharge of non-categorical process wastewater, once through cooling water, utility wastewater, and non-process area stormwater from the Solvents/EDC I Plant. This internal outfall discharges to CWR Canal A and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic			Discharge	<u>Limitations</u> Othe	er Units	Monitoring Reg	uirements
•		(lbs/day, ur	iless stated)	(ug/l, un	less stated)		
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
Nonconventional							
Flow - MGD	50050	Report	Report	-	-	1/Week	Estimate
Volatile Compounds							
1,2-Dichloroethane	32103	•	•	-	574	1/Year	Grab
Tetrachloroethylene	34475	•	-		164	1/Week	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 201 (521), at the point of discharge from the Solvents/EDC I Plant TTU lined ditch, from a catwalk in the northeast corner of Block 15, prior to mixing with other waters in CWR Canal A at Latitude 30°18′52″, Longitude 91°14′00″.

Part I

Permit No. Draft LA0003301

Page 13 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through cessation of process wastewater discharges from the Ethylene Dichloride manufacturing operations (*1) the permittee is authorized to discharge from:

Internal Outfall 301 (114) (Canal D) (Phase I) (estimated total outfall flow is 61.9 MGD), this internal outfall consists of the continuous discharge of cooling water returns, fire deluge water, utility wastewater, non-process area stormwater, post first flush OCPSF stormwater, and discharges from Internal Outfalls 311 (531). This internal outfall discharges to CWR Canal A and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic			Discharge	<u>Limitations</u>		Monitorina Re	quirements
				Othe	r Units		
Conventional/ Nonconventional	Storet Code	lbs/day, un Monthly Average	iless stated) Daily Maximum	(ug/l, uni Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type
Nonconventional		_		-		•	• ••
Flow - MGD	50050	Report	Report	-	-	1/Week	Estimate
TOC - mg/l	00680	*	-		50	1/Week	Grab
Oil and Grease-mg/l	03582	. •	-	-	15	1/Week	Grab
1,2-Dichloroethane	32103	-	-	•	574	1/Week	Grab
1,2-Dichloropropane	34541	-	4	~	794	1/Week	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 301 (114), at the point of discharge from the southern end of CWR Canal D, prior to mixing with other waters in CWR Canal A at Latitude 30°18′51″, Longitude 91°14′10″.

FOOTNOTE(5):

(*1) The permittee shall notify the Office of Environmental Services, the Office of Environmental Compliance – Permit Compliance Unit, and the Capital Regional Office in writing at least 30 days prior to discharging under the Phase II conditions.

Part I

Permit No. Draft LA0003301

Page 14 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning <u>cessation of process wastewater discharges from the Ethylene Dichloride manufacturing operations</u> and lasting through <u>the expiration date</u> the permittee is authorized to discharge from:

Internal Outfall 301 (114) (Canal D) (Phase II) (estimated total outfall flow is 61.9 MGD), this internal outfall consists of the continuous discharge of cooling water returns, fire deluge water, utility wastewater, non-process area stormwater, post first flush OCPSF stormwater, and discharges from Internal Outfalls 311 (531). This internal outfall discharges to CWR Canal A and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic	Discharge Limitations					Monitoring Requirements					
		Other Units									
Conventional/ Nonconventional	Storet Code	lbs/day, un Monthly Average	iless stated) Daily Maximum	(ug/i, uni Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type				
Nonconventional											
Flow - MGD	50050	Report	Report	-	_	1/Week	Estimate				
TOC – mg/l	00680	-	-	-	55	1/Week	Grab				
Oil and Grease-mg/l	03582	-	-	-	15	1/Week	Grab				
1,2-Dichloroethane	32103	•	-		574	1/Year	Grab				
1,2-Dichloropropane	34541	•	•	-	794	1/Week	Grab				

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 301 (114), at the point of discharge from the southern end of CWR Canal D, prior to mixing with other waters in CWR Canal A at Latitude 30°18′51″, Longitude 91°14′10″.

Page 15 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through cessation of process wastewater discharges from the Ethylene Dichloride manufacturing operations (*1) the permittee is authorized to discharge from:

Internal Outfall 311 (531) (Solvents) (Phase I) (estimated total outfall flow is 8.45 MGD), this internal outfall consists of the continuous discharge of OCPSF process wastewater, OCPSF process area stormwater, non-categorical process wastewater, recovered groundwater, once through cooling water, and utility wastewater from the Solvents/EDC I Plant. This internal outfall discharges to CWR Canal D, through Internal Outfall 301 (114), and then to Outfall 001.

Effluent Characteristic			Discharge Li	Monitoring Requirements							
		Other Units									
Conventional/ Nonconventional Conventional	Storet Code	(lbs/day, ur Monthly Average	iless stated) Daily Maximum	(ug/l, un Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type				
BODs	00310	1095	2773	-	-	1/Quarter	Grab				
TSS (*2)	00530	1329	4286	-	,	1/Month	24 Hr Composite				
Nonconventional	a.	••									
Flow - MGD	50050	Report	Report	•	-	Continuous	Recorder				
Volatile Compounds											
Acrylonitrile	34215	2.65	6,54		•	1/Year	Grab				
Benzene	34030	1.61	3.78	•	•	1/Year	Grab 24 Hr				
Carbon Tetrachloride	32102	4	10.7	•	•	2/Month	Composite				
Chlorobenzene	34301	4	10.7	-	78	1/Year	Grab				
Chloroethane	85811	3.1	B.32 .	-	-	1/Year	Grab				
Chloroform	32106	3.13	9.16	-		1/Week	24 Hr Composite 24 Hr				
1,1-Dichloroethane	34496	0.62	1.66	•	-	1Month	Composite 24 Hr				
1,2-Dichloroethane	32103	5.07 .	16.2	*	•	1/Month	Composite				
1,1-Dichloroethylene	34501	0.62	1.69	•	-	1/Year	Grab 24 Hr				
1,2-Dichloropropane	34541	5.53	22.4	•	-	1/Month	Composite				
1,3-Dichloropropylene	34561	5.53	22.4	•	-	1/Year	Grab				
Ethylbenzene	34371	4	10.7	•		1/Year	Grab				
Methyl Chloride	3 44 18	3.1	8.32	-	-	1/Year	Grab				
Methylene Chloride	34423	1.01	4.79	-	•	1/Year	Grab 24 Hr				
Tetrachloroethylene	34475	1.47	4.62	•	•	1/Month	Composite				
Toluene	34010	0.79	2.09	-	-	1/Year	Grab				
1,2-trans- Dichloroethylene	34546	0.71	1.86	-	•	1/Year	Grab				
1,1,1-Trichloroethane	34506	0.62	1.66	•	-	1/Year	Grab				
1,1,2-Trichloroethane	34511	0.9	3.58	-		1/Year	Grab				
Trichloroethylene	39180	0.73	1.95	-	•	1/Year	Grab				

Part 1 Permit No. Draft LA0003301

Page 16 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 311 - Phase I continued)

Effluent Characte	eristic		Discharge Li	Monitoring Requirements			
	Storet Code	(ibs/day, un Monthly Average	less stated) Daily Maximum	(ug/l, uni Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type
Vinyl Chloride	39175	2.73	4.85	•	-	1/Month	24 Hr Composite
Acid Compounds		•					
2,4-Dimethylphenol	34606	0.54	1.32			1/Year	Grab
4,6-Dinitro-o-cresol	34657	2.2	7.81		-	1/Year	Grab
2,4-Dinitrophenol	34616	34	121		_	1/Year	Grab
2-Nitrophenol	34591	1.83	6.51	•	<u>-</u>	1/Year	Grab
4-Nitrophenol	34646	4.57	16.2			I/Year	Grab
Phenol	34694	0.54	1.32	•	-	1/Year	Grab
Base Neutral Compound	ds						
Acenaphthene	34205	0.54	1.32	_	•	1/Year	Grab
Acenaphthylene	34200	0.54	1.32			1/Year	Grab
Anthracene	34220	0.54	1.32		•	1/Year	Grab
Benzo(a)anthracene	34526	0.54	1.32	-	-	1/Year	Grab
Benzo(a)pyrene	34247	0.56	1.35		•	1/Year	Grab
3,4-Benzofluoranthene	34230	0.56	1.35		•	1/Year	Grab
Benzo(k)fluoranthene	34242	0.54	1.32	•	•	1/Year	Grab
Bis(2-ethylhexyl) phthalate	39100	2.68	7.27			1/Year	Grab
Chrysene	34320	0.54	1.32		_	1/Year	Grab
1,2-Dichlorobenzene	34536	5.53	22.4			1/Year	Grab
1,3-Dichlorobenzene	34566	4	10.7	-		1/Year	Grab
1,4-Dichlorobenzene	34571	4	10.7		_	1/Year	Grab
Diethyl phthalate	34336	1.3	3.19		-	1/Year	Grab
Dimethyl phthalate	34341	0.54	1.32		•	1/Year	Grab
Di-n-butyl phthalate	39110	0.56	1.21		•	1/Year	Grab
Fluoranthene	34376	0.62	1.52		-	1/Year	Grab
Fluorene	34381	0.54	1.32			1/Year	Grab
Hexachlorobenzene	39700	5.53	22.4	•	•	1/Year	Grab
Hexachlorobutadiene	34391	4	10.7	-		1/Year	Grab
Hexachloroethane	34396	5.53	22.4	•	-	1/Year	Grab
Naphthalene	34 696	0.54	1.32	•		1/Year	Grab
Nitrobenzene	34447	63.1	181	-	-	1/Year	Grab
Phenanthrene	34461	0.54	1.32	₩.	-	1/Year	Grab
Pyrene	34469	0.56	1.35	-	•	1/Year	Grab
1,2,4-Trichlorobenzene	34551	5,53	22,4	٠	*	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 311 (531), at the point of discharge southeast of the Solvents/EDC I Plant control room (Building 1617) in Block 16, prior to mixing with other waters in CWR Canal D at Latitude 30°18′57″, Longitude 91°14′03″.

Page 17 AI No. 1409

FOOTNOTE(5):

- (*1) The permittee shall notify the Office of Environmental Services, the Office of Environmental Compliance Permit Compliance Unit, and the Capital Regional Office in writing at least 30 days prior to discharging under the Phase II conditions.
- (*2) TSS limitations are to be determined as follows: TSS (reported on DMR) = TSS measured at Internal Outfall 311 (531) TSS of once through cooling water measured prior to entering the Solvents/EDC I Plant. Sampling shall be done concurrently.

Page 18 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning cessation of process wastewater discharges from the Ethylene Dichloride manufacturing operations and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 311 (531) (Solvents) (Phase 2) (estimated total outfall flow is 8.45 MGD), this internal outfall consists of the continuous discharge of OCPSF process wastewater, OCPSF process area stormwater, non-categorical process wastewater, recovered groundwater, once through cooling water, and utility wastewater from the Solvents/EDC I Plant. This internal outfall discharges to CWR Canal D, through Internal Outfall 301 (114), and then to Outfall 301.

Effluent Characteristic			Discharge Li	Monitoring Requirements			
	•						
		(Ibs/day, un	iless stated)	(ug/l, uni	.		
Conventional/ Nonconventional	Storet Code	Monthly Average	Dally Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
Conventional							. ,,
BOD ₅	00310	1,181	3,034	-	-	1/Quarter	Grab 24 Hr
TSS (*1)	00530	1,393	4,500	•	•	1/Month	Composite
Nonconventional							
Flow - MGD	50050	Report	Report	•	•	Continuous	Recorder
Volatile Compounds							
Acrylonitrile	34215	2,65	6.54	•	-	1/Year	Grab
Benzene	34030	1.61	3.78	•	-	1/Year	Grab 24 Hr
Carbon Tetrachloride	32102	4	10.7	•	-	2/Month	Composite
Chlorobenzene	34301	4	10.7	-	•	1/Year	Grab
Chloroethane	85811	3.1	8.32	•	-	1/Year	Grab 24 Hr
Chloroform	32106	3.13	9.16	-	•	1/Week	Composite 24 Hr
1,1-Dichloroethane	34496	0.62	1.66	-	•	1/Month	Composite 24 Hr
1,2-Dichloroethane	32103	5.07	16.2	-	-	1/Month	Composite
1,1-Dichloroethylene	34501	0.62	1.69	-	•	1/Year	Grab 24 Hr
1,2-Dichloropropane	34541	5,53	22.4	•	-	1/Month	Composite
1,3-Dichloropropylene	34561	5.53	22.4	•	•	1/Year	Grab
Ethylbenzene	34371	4	10.7		-	1/Year	Grab
Methyl Chloride	34418	3.1	8.32	•	•	1/Year	Grab
Methylene Chloride	34423	1.01	4,79		-	1/Year	Grab 24 Hr
Tetrachloroethylene	34475	1.47	4.62	-	+	1/Month	Composite
Toluene	34010	0.7 9	2.09	•	•	1/Year	Grab
1,2-trans- Dichloroethylene	34546	0.71	1.86			1/Year	Grab
1,1,1-Trichloroethane	34506	0.62	1.66	-		1/Year	Grab
1,1,2-Trichloroethane	34511	0.9	3.58	•	-	1/Year	Grab
Trichloroethylene	39180	0.73	1.95	•	-	1/Year	Grab

Part I Permit No. Draft LA0003301

Page 19 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 311 - Phase II continued)

Effluent Characteristic			<u>Discharge Li</u>	Monitoring Requirements			
	Storet Code	(ibs/day, un Monthly Average	less stated) Daily Maximum	(ug/l, un Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type
Vinyl Chloride	39175	2.73	4.85		•	1/Month	24 Hr Composite
Acid Compounds					•		
2,4-Dimethylphenol	34606	0.54	1.32	•	•	1/Year	Grab
4,6-Dinitro-o-cresol	34657	2.2	7.81	_		1/Year	Grab
2,4-Dinitrophenol	34616	34	121	•		1/Year	Grab
2-Nitrophenol	34591	1.83	6.51	-	•	1/Year	Grab
4-Nitrophenol	34646	4,57	16.2			1/Year	Grab
Phenol	34694	0.54	1.32	-	-	1/Year	Grab
Base Neutral Compoun	ds						
Acenaphthene	34205	0.54	1.32	-		1/Year	Grab
Acenaphthylene	34200	0.54	1.32			1/Year	Grab
Anthracene	34220	0.54	1.32	-		1/Year	Grab
Benzo(a)anthracene	34526	0.54 .	1.32			1/Year	Grab
Benzo(a)pyrene	34247	0.56	1.35	_	-	1/Year	Grab
3,4-Benzofluoranthene	34230	0.56	1.35		-	1/Year	Grab
Benzo(k)fluoranthene	34242	0.54	1.32	_		1/Year	Grab
Bis(2-ethylhexyl) phthalate	39100	2.68	7.27	-	•	1/Year	Grab
Chrysene	34320	0,54	1.32	_	-	1/Year	Grab
1,2-Dichlorobenzene	34536	5.53	22.4			1/Year	Grab
1,3-Dichlorobenzene	34566	4	10.7	•	•	1/Year	Grab
1,4-Dichlorobenzeńe	34571	4	10.7	-		1/Year	Grab
Diethyl phthalate	34336	1.3	3.19		-	1/Year	Grab
Dimethyl phthalate	34341	0.54	1.32	-		1/Year	Grab
Di-n-butyl phthalate	39110	0.56	1.21		·	1/Year	Grab
Fluoranthene	34376	0.62	1.52	*	-	1/Year	Grab
Fluorene	34381	0.54	1.32		-	1/Year	Grab
Hexachlorobenzene	39700	5.53	22.4	-		1/Year	Grab
Hexachlorobutadiene	34391	4	10.7	•	-	1/Year	Grab
Hexachloroethane	34396	5.53	22.4	_	•	1/Year	Grab
Naphthalene	34696	0.54	1.32	•	•	1/Year	Grab
Nitrobenzene	34447	63.1	181	-	•	1/Year	Grab
Phenanthrene	34461	0.54	1.32	=	٠	1/Year	Grab
Pyrene	34469	0.56	1.35	•	•	1/Year	Grab
1,2,4-Trichlorobenzene	34551	5.53	22.4	•	-	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 311 (531), at the point of discharge southeast of the Solvents/EDC I Plant control room (Building 1617) in Block 16, prior to mixing with other waters in CWR Canal D at Latitude 30°18'57", Longitude 91°14'03".

Page 20 Al No. 1409

FOOTNOTE(S):

(*1) TSS limitations are to be determined as follows: TSS (reported on DMR) = TSS measured at Internal Outfall 311 (531) – TSS of once through cooling water measured prior to entering the Solvents/EDC I Plant. Sampling shall be done concurrently.

Part I

Permit No. Draft LA0003301

Page 21 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 401 (115) (Canal E) (estimated total outfall flow is 143.7 MGD), this internal outfall consists of the continuous discharge of cooling water returns, fire deluge water, utility wastewater, carbon bed backwash, non-process area stormwater, discharges from Internal Outfalls 421 (911) and 411 (301), and discharges from Power III. This internal outfall discharges to CWR Canal A and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic			<u> Discharge</u>	Monitoring Requirements							
Conventional/ Nonconventional		Other Units									
		(lbs/day, ur	less stated)	(ug/l, un	less stated)						
	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type				
Nonconventional											
Flow - MGD	50050	Report	Report	•	•	1/Week	Estimate				
TOC ~ mg/l	00680	•	-	-	50	1/Week	Grab				
Oil and Grease-mg/l	03582		-	•	15	1/Week	Grab				

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 401 (115), at the point of discharge from the southern end of CWR Canal E, prior to mixing with other waters in CWR Canal A at Latitude 30°18′58″, Longitude 91°14′18°.

Page 22 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 411 (301) (Chlorine) (estimated total outfall flow is 20.1 MGD), this internal outfall is a virtual outfall consisting of the continuous discharge of inorganic process wastewater, process area stormwater, once through cooling water, and utility wastewater from the Chlorine Plant and the discharge of inorganic process wastewater, process area stormwater, non-process area stormwater, and utility wastewater from the Caustic Plant. This internal outfall discharges to CWR Canal E, through Internal Outfall 401 (115), and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic	Discharge L	imitations	Monitoring Requirements				
				r Units			
		(ibs/day, u	niess stated)	(ug/l, unl	ess stated)		
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
Conventional TSS	00530	3570	7700	-		1/Month	24 Hr Composite
Nonconventional							
Flow - MGD Chlorine (Total	50050	Report	Report	-	•	1/Month	Estimate
Residual)	50060	55.3	91	*	*	1/Month	Grab
METALS						,	24 Hr
Copper (Total)	01042	34.3	84	-	-	1/Month	Composite 24 Hr
Lead (Total)	01051	16.8	41.3	-	•	1/Month	Composite 24 Hr
Nickel (Total)	01007	25.9	67.9		•	1/Month	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 411 (301), the summation of samples taken at the following locations: Chlorine Plant sample location - Chlorine Plant discharge at 48-inch concrete trench and Caustic Plant sampling location - 36-inch flume located on the south side of the Caustic Plant. For purposes of TSS at the Chlorine Plant, the limit applies as the sum of TSS discharged at (a) the cell area drainage and cell washes and (b) the neutralization system facility prior to commingling with once through cooling water for eventual discharge through the Chlorine Plant 48-inch concrete trench. The sum of the Influent flows may be used for calculating TSS mass. The virtual internal outfall coordinates are Latitude 30°19'06", Longitude 91°14'09".

Effluent Characteristic

Page 23 AI No. 1409

Monitoring Requirements

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 421 (911) (Poly B) (estimated total outfall flow is 2.55 MGD), this internal outfall consists of the continuous discharge of OCPSF process wastewater, OCPSF process area stormwater, once through cooling water, and utility wastewater from the Polyethylene B Plant. This internal outfall discharges to CWR Canal E, through Internal Outfall 401 (115), and then to Outfall 001.

Discharge Limitations

Effluent Characteristic			Discharge L	Monitoring Requirements				
				Othe	er Units			
		(lbs/daγ, u	nless stated)	(ug/l, un	less stated)			
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type	
Conventional								
BOD ₅	00310	99	242	•	-	1/Quarter	Grab	
TSS	00530	114	366	-		1/Quarter	Grab	
Nonconventional			,					
Flow - MGD	50050	Report	Report	-	•	1/Week	Estimate	
Volatile Compounds								
Acrylonitrile	34215	0.26	0.64	-	-	1/Year	Grab	
Benzene	34030	0.16	0.37	-	-	1/Year	Grab	
Carbon Tetrachloride	32102	0.39	1.05	-	•	1/Year	Grab	
Chlorobenzene	34301	0.39	1.05	• `	-	1/Year	Grab	
Chloroethane	85811	0.3	0.81		-	1/Year	Grab	
Chloroform	32106	0.95	2.76	•	-	1/Year	Grab	
1,1-Dichloroethane	34496	0.061	0.16	-	-	1/Year	Grab	
1,2-Dichloroethane	32103	0.5	1.58	-	-	1/Year	Grab	
1,1-Dichloroethylene	34501	0.06	0.17	-	-	1/Year	Grab	
1,2-Dichloropropane	34541	0.54	2.2	•	-	1/Year	Grab	
1,3-Dichloropropylene	34561	0.54	2.2	-	-	1/Year	Grab	
Ethylbenzene	34371	0.39	1.05	*		1/Year	Grab	
Methyl Chloride	3 44 18	0.30	0.81	-	-	1/Year	Grab	
Methylene Chloride	34423	0.1	0.47	-	-	1/Year	Grab	
Tetrachioroethylene	34475	0.14	0.45	-	-	1/Year	Grab	
Taluene	34010	0.08	0.2	*	•	1/Year	Grab	
1,2-trans-								
Dichloroethylene	34546	0.07	0.18	•	-	1/Year	Grab	
1,1,1-Trichloroethane	34506	0.06	0.16	•	-	1/Year	Grab	
1,1,2-Trichloroethane	34511	0.09	0.35	-	-	1/Year	Grab	
Trichloroethylene	39180	0.07	0.19	•	-	1/Year	Grab	
Vinyl Chloride	39175	0.27	0.47	u	•	1/Year	Grab	
Acid Compounds								
2,4-Dimethylphenol	34606	0.05	0.13	٠	•	1/Year	Grab	
4,6-Dinitro-o-cresol	34657	0.21	0.76	-	٠	1/Year	Grab	

Part I Permit No. Draft LA0003301

Page 24 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 421 continued)

Effluent Characteristic			<u> Discharge I</u>	Monitoring Requirements			
	Storet Code	(lbs/day, u Monthly Average	nless stated) Daily Maximum		er Units less stated) Daily Maximum	Measurement Frequency	Sample Type
2,4-Dinitrophenol	34616	3.3	11.8	-		1/Year	Grab
2-Nitrophenol	34591	0.18	0.64	-	-	1/Year	Grab
4-Nitrophenol	34646	0.45	1.59	•	-	1/Year	Grab
Phenol	34 694	0.05	0.13	-	•	1/Year	Grab
Base Neutral Compoun	<u>ds</u>						
Acenaphthene	34205	0.05	0.13	-	-	1/Year	Grab
Acenaphthylene	34200	0.05	0.13	-	-	1/Year	Grab
Anthracene	34220	0.05	0.13	-	-	1/Year	Grab
Benzo(a)anthracene	34526	0.05	0.13	-	-	1/Year	Grab
Benzo(a)pyrene	34247	0.06	0.13	-	-	1/Year	Grab
3,4-Benzofluoranthene	34230	0.06	0.13		-	1/Year	Grab
Benzo(k)fluoranthene	34242	0.05	0.13	-	-	1/Year	Grab
Bis(2-ethylhexyl) phthalate	39100	0.26	0.71		5	1/Year	Grab
Chrysene	34320	0.05	0.13	_	_	1/Year	Grab
1,2-Dichlorobenzene	34536	0.54	2.2	_		1/Year	Grab
1.3-Dichlorobenzene	34566	0.39	1.05		•	1/Year	Grab
1,4-Dichlorobenzene	34571	0.39	1.05	_	_	1/Year	Grab
Diethyl phthalate	34336	0.13	0.31	-	_	1/Year	Grab
Dimethyl phthalate	34341	0.05	0.13	_	_	1/Year	Grab
Di-n-butyl phthalate	39110	0.06	0.13	-	_	1/Year	Grab
Fluoranthene	34376	0.06	0.15		-	1/Year	Grab
Fluorene	34381	0.05	0.13			1/Year	Grab
Hexachlorobenzene	39700	0.54	2,2			1/Year	Grab
Hexachlorobutadiene	34391	0.39	1.05	_	<u>.</u>	1/Year	Grab
Hexachloroethane	34396	0.54	2.2		-	1/Year	Grab
Naphthalene	34696	0.05	0.13		•	1/Year	Grab
Nitrobenzene	34447	6.2	17.6	-	-	1/Year	Grab
Phenanthrene	34461	0.05	0.13	•		1/Year	Grab
Pyrene	34469	0.06	0.13	-	-	1/Year	Grab
1,2,4-Trichlorobenzene	34551	0.54	2.2	-	-	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 421 (911), at the point of discharge from 421A (911A) located at the southwest corner of the Polyethylene B Plant, at the corner of North Canal Road and the railroad track in Block 9, prior to mixing with other waters in CWR Canal E at Latitude 30°19'09", Longitude 91°13'44".

Effluent Characteristic

Page 25 AI No. 1409

Monitoring Requirements

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 501 (116) (Canal A) (estimated total outfall flow is 283.3 MGD), this internal outfall consists of the continuous discharge of cooling water returns, fire deluge water, utility wastewater, non-process area stormwater, post first- flush OCPSF storm water, discharges from Internal Outfalls 541 (1531), 521 (1521), 531 (1561), 511 (2501), and 601 (117), and discharges from embedded company (INEOS). This internal outfall discharges to CWR Canal A and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

		Other Units								
	(lbs/day, un	less stated)	(ug/l, un	less stated)					
<u>Conventional/</u> Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Dally Maximum	Measurement Frequency	Sample Type			
Nonconventional										
Flow - MGD	50050	Report	Report	-	-	1/Week	Estimate			
TOC - mg/l	00680	_			50	1/Week	Grab			
Oil and Grease-mg/l	03582	-	•	~	15	1/Week	Grab			
Benzene	34030	•		.	134	1/Week	Grab			
Ethylbenzene	34371	-	-	-	380	1/Week	Grab			
Methyl Chloride	34418	*			295	1/Week	Grab			
Toluene	34010		**	*	74	1/Week	Grab			

Discharge Limitations

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 501 (116), at the point of discharge from the southwestern end of CWR Canal A prior to mixing with other waters in CWR Canal E at Latitude 30°18'58", Longitude 91°14'21".

Effluent Characteristic

Page 26 AI No. 1409

Monitoring Requirements

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Discharge Limitations

Internal Outfall 511 (2501) (Vector) (estimated total outfall flow is 0.425 MGD), this internal outfall consists of the intermittent discharge of OCPSF process wastewater, OCPSF process area storm water, utility wastewater, and non-process area stormwater from the Vector SBC Plant. This internal outfall discharges to CWR Canal A, through Internal Outfall (501) 116, and then to Outfall 001.

erittelit Characteristic		Distinate Limitations Monitoring Requirements									
				Othe	er Units						
<u>Conventional/</u> Nonconventional <u>Conventional</u>	Storet Code	(lbs/day, u Monthly Average	niess stated) Daily Maximum	(ug/l, un Monthly Average	less stated) Daily Maximum	Measürement Frequency	Sample Type				
BODs - mg/l	00310		**	35.6	94.8	1/Quarter	Grab				
TSS - mg/l	00510		*	49.4	159.2	1/Quarter	Grab				
Nonconventional											
Flow - MGD	50050	Report	Report	-		1/Week	Estimate				
Volatile Compounds											
Acrylonitrile	34215		-	94	232	1/Year	Grab				
Benzene	34030	-	-	57	134	1/Year	Grab				
Carbon Tetrachloride	32102	* .	•	142	380	1/Year	Grab				
Chlorobenzene	34301	•	•	142	380	1/Year	Grab				
Chloroethane	85811	•	•	110	295	1/Year	Grab				
Chloroform	32106		•	111	325	1/Year	Grab				
1,1-Dichloroethane	34496	٠	-	22	59	1/Year	Grab				
1,2-Dichloroethane	32103		-	180	574	1/Year	Grab				
1,1-Dichloroethylene	34501	H		22	60	1/Year	Grab				
1,2-Dichloropropane	34541	•	+	196	794	1/Year	Grab				
1,3-Dichloropropylene	34561	<u>u</u>	-	196	794	1/Year	Grab				
Ethylbenzene	34371	n	•	142	380	1/Year	Grab				
Methyl Chloride	34418	+	*	110	295	1/Year _.	Grab				
Methylene Chloride	34423		-	36	170	1/Year	Grab				
Tetrachloroethylene	34475	*	•	52	164	1/Year	Grab				
Toluene	34010	-	-	28	74	1/Year	Grab				
1,2-trans- Dichloroethylene	34546	_		25	66	1/Year	Grab				
1,1,1-Trichloroethane	34506	•	÷	22	59	1/Year	Grab				
1,1,2-Trichloroethane	34511	*		32	127	1/Year	Grab				
Trichloroethylene	39180		-	26	69	1/Year	Grab				
Vinyl Chloride	39175	·	-	97	172	1/Year	Grab				
And Compounds											
Acid Compounds 2,4-Dimethylphenol	34606			19	47	1/Year	Grab				
4,6-Dinitro-o-cresol	34657			78	277	1/Year	Grab				
ч,о-ынкоо-о-ы езог	34037	•	-	70	411	173001	SHUD				

Part I Permit No. Draft LA0003301

Page 27 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 511 continued)

Effluent Characteristic			Discharge I	Monitoring Requirements			
	Storet Code	(lbs/day, u Monthly Average	niess stated) Daily Maximum	(ug/l, uni Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type
2,4-Dinitrophenol	34616	-	-	1207	4291	1/Year	Grab
2-Nitrophenol	34591		•	65	231	1/Year	Grab
4-Nitrophenol	34646	-	•	162	576	1/Year	Grab
Phenol	34694	-	•	19	47	1/Year	Grab
Base Neutral Compoun	ds						
Acenaphthene	34205	•	-	19	47	1/Year	Grab
Acenaphthylene	34200	-	•	19	47	1/Year	Grab
Anthracene	34220	-		19	47	1/Year	Grab
Benzo(a)anthracene	34526	-	-	19	47	1/Year	Grab
Benzo(a)pyrene	34247	-	•	20	48	1/Year	Grab
3,4-Benzofluoranthene	34230	-		20	48	1/Year	Grab
Benzo(k)fluoranthene	34242	-		19	47	1/Year	Grab
Bis(2-ethylhexyl) phthalate	39100	-	•	95	258	1/Year	Grab
Chrysene	34320	-		19	47	1/Year	Grab
1,2-Dichlorobenzene	34536	•		196	794	1/Year	Grab
1,3-Dichlorobenzene	34566	••	-	142	380	1/Year	Grab
1,4-Dichlorobenzene	34571	-	•	142	380	1/Year	Grab
Diethyl phthalate	34336		•	46	113	1/Year	Grab
Dimethyl phthalate	34341	•	-	19	47	1/Year	Grab
Di-n-butyl phthalate	39110	-	-	20	43	1/Year	Grab
Fluoranthene	34376	-	•	22	54	1/Year	Grab
Fluorene	34381	•		19	47	1/Year	Grab
Hexachlorobenzene	39700	-	-	196	794	1/Year	Grab
Hexachlorobutadiene	34391	•	•	142	380	1/Year	Grab
Hexachloroethane	34396	-	-	196	794	1/Year	Grab
Naphthalene	34696	-	-	19	47	1/Year	Grab
Nitrobenzene	34447	•	-	2237	6402	1/Year	Grab
Phenanthrene	34461	•	•	19	47	1/Year	Grab
Pyrene	34469	•	-	20	48	1/Year	Grab
1,2,4-Trichlorobenzene	34551	•	•	196	794	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 511 (2501), at the point of discharge from the welr in the concrete ditch at the northwest corner of the Vector SBC Plant in Block 43, prior to mixing with other waters in CWR Canal A at Latitude 30°19'00", Longitude 91°14'31".

Page 28 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 521 (1521) (CMP-Methanes) (estimated total outfall flow is 1.3 MGD), this internal outfall consists of the intermittent discharge of OCPSF process wastewater, OCPSF process area storm water, non-process area storm water, once through cooling water, and utility wastewater from the Chlorinated Methanes Plant. This internal outfall discharges to CWR Canal A, through Internal Outfall 501 (116), and then to Outfall 001.

Effluent Characteristic		Discharge Limitations				Monitoring Requirements	
		Other Units					
		(lbs/day, unless stated)		(ug/l, unless stated)			
Conventional/ Nonconventional Conventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
80Ds - mg/l	00310		-	34	92	1/Quarter	Grab
TSS - mg/l	00530	-	-	49	159	1/Quarter	Grab
Nonconventional							
Flow - MGD	50050	Report	Report	-	-	1/Week	Estimate
Volatile Compounds							
Acrylonitrile	34215	-		94	232	1/Year	Grab
Benzene	34030	-	-	57	134	1/Year	Grab
Carbon Tetrachloride	32102	•	-	142	380	1/Year	Grab
Chlorobenzene	34301		•	142	380	1/Year	Grab
Chloroethane	85811	*	-	110	295	1/Year	- Grab
Chloroform	32106	-	-	111	325	1/Year	Grab
1,1-Dichloroethane	34496	-	-	22	59	· 1/Year	Grab
1,2-Dichloroethane	32103	*	•	180	574	1/Year	Grab
1,1-Dichloroethylene	34501	-	-	22	60	1/Year	Grab
1,2-Dichloropropane	34541	•	•	196	794	1/Year	Grab
1,3-Dichloropropylene	34561	÷	•	196	794	1/Year	Grab
Ethylbenzene	34371	•		142	380	1/Year	Grab
Methyl Chloride	34418	•	-	110	295	1/Year	Grab
Methylene Chloride	34423			36	170	1/Year	Grab
Tetrachloroethylene	34475	~		52	164	1/Year	Grab
Toluene	34010	-	-	28	74	1/Year	Grab
1,2-trans-							
Dichloroethylene	34546	•	•	25	66	1/Year	Grab
1,1,1-Trichloroethane	34506	•	-	22	59	1/Year	Grab
1,1,2-Trichloroethane	34511	•		32	127	1/Year	Grab
Trichloroethylene	39180	-	*	26	69	1/Year	Grab
Vinyl Chloride	39175	٠	*	97	172	1/Year	Grab
Acid Compounds							
2,4-Dimethylphenol	34606	70.	. •	19	47	1/Year	Grab

Part I Permit No. Draft LA0003301

Page 29 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 521 continued)

Effluent Characteristic			Discharge Li	Monitoring Requirements			
	Storet Code	(ibs/day, u Monthly Average	nless stated) Daily Maximum	(ug/l, unl Monthly Average	ess stated) Daily Maximum	Measurement Frequency	Sample Type
4,6-Dinitro-o-cresol	34657		•	78	277	1/Year	Grab
2,4-Dinitrophenol	34616	-		1207	4291	1/Year	Grab
2-Nitrophenol	34591	_	-	65	231	1/Year	Grab
4-Nitrophenol	34646	-	•	162	576	1/Year	Grab
Phenol	34694	-	-	19	47	1/Year	Grab
Base Neutral Compour	ı <u>ds</u>						
Acenaphthene	34205		•	19	47	1/Year	Grab
Acenaphthylene	34200	-	•	19	47	1/Year	Grab
Anthracene	34220	-	-	19	47	1/Year	Grab
Benzo(a)anthracene	34526	•	•	19	47	1/Year	Grab
Benzo(a)pyrene	34247	-	-	20	48	1/Year	Grab
3,4-Benzofluoranthene	34230	-	•	20	48	1/Year	Grab
Benzo(k)fluoranthene	34242	-	-	19	47	1/Year	Grab
Bis(2-ethylhexyl)							
phthalate	39100	-	-	95	258	1/Year	Grab
Chrysene	34320	-	-	19	47	1/Year	Grab
1,2-Dichlorobenzene	34536	-	٠	196	794	1/Year	Grab
1,3-Dichlorobenzene	34566	-	-	142	380	1/Year	Grab
1,4-Dichlorobenzene	34571	•	•	142	380	1/Year	Grab
Diethyl phthalate	34336	-	-	46	113	1/Year	Grab
Dimethyl phthalate	34341	-	•	19	47	1/Year	Grab
Di-n-butyl phthalate	39110		•	20	43	1/Year	Grab
Fluoranthene	34376	- "	-	22	54	1/Year	Grab
Fluorene	34381	-	<u>.</u>	19	47	1/Year	Grab
Hexachlorobenzene	39700	-	-	196	794	1/Year	Grab
Hexachlorobutadiene	34391	•	~	142	380	1/Year	Grab
Hexachloroethane	34396	-		196	794	1/Year	Grab
Naphthalene	34696	•	-	19	47	1/Year	Grab
Nitrobenzene	34447	•	-	2237	6402	1/Year	Grab
Phenanthrene	34461	•	•	19	47	1/Year	Grab
Pyrene	34469	•	•	20	48	1/Year	Grab
1,2,4-Trichlorobenzene	34551	•	-	196	794	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 521 (1521), at the point of discharge from the North side of the sump outfall weir on the southwest side of Chlorinated Methanes Plant in Block 46, prior to mixing with other waters in CWR Canal A at Latitude 30°19'12", Longitude 91°14'28".

Page 30 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 531 (1561) (CMP) (estimated total outfall flow is 0.334 MGD), this internal outfall consists of the continuous discharge of non-categorical process wastewater (thermal treatment unit) from the Chlorinated Methanes Plant. This internal outfall discharges to CWR Canal A, through Internal Outfall 501 (116), and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic			Discharge	Monitoring Requirements			
				Othe	er Units		,
	((lbs/day, ur	less stated)	(ug/l, un	less stated)		
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
Nonconventional Flow - MGD	50050	Report	Report	•	_	1/Month	Estimate
TOC mg/l	00680	-	-	-	50	1/Month	Grab
Oil and Grease-mg/l	03582	•	-		15	1/Month	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 531 (1561), at the point of discharge from the Chlorinated Methanes Plant thermal treatment unit (TTU), at the discharge piping sample point on the west side of the shot pond in Block 46, prior to mixing with other waters in CWR Canal A at Latitude 30°19'10", Longitude 91°14'24".

Page 31 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 541 (1531) (CMP-Methanes) (estimated total outfall flow is 0.077 MGD), this internal outfall consists of the continuous discharge of OCPSF process wastewater from the Chlorinated Methanes Plant. This internal outfall discharges to CWR Canal A, through Internal Outfall 501 (116), and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic	į		Discharge I	Monitoring Regulrements							
		Other Units									
		(lbs/day, u	nless stated)	stated) (ug/l, unles:							
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type				
Conventional											
BOD ₅	00310	23	61	-	-	1/Quarter	Grab				
TSS	00530	33	106	•	-	1/Quarter	Grab				
Nonconventional											
Flow - MGD	50050	Report	Report	•	-	Continuous	Recorder				
Volatile Compounds											
Acrylonitrile	34215	0.06	0.16		•	1/Year	Grab				
Benzene	34030	0.04	0.09		•	1/Year	Grab				
Carbon Tetrachloride	32102	0.1	0.25		•	1/Year	Grab				
Chlorobenzene	34301	0.1	0.25	-	•	1/Year	Grab				
Chloroethane	85811	0.07	0.2	•	-	1/month	Grab				
Chloroform	32106	0.07	0.22	-	•	1/Year	Grab				
1,1-Dichloroethane	34496	0.02	0.04	•	-	1/Year	Grab				
1,2-Dichloroethane	32103	0.12	0.38	-	-	1/Year	Grab				
1,1-Dichloroethylene	34501	0.02	0.04	-	-	1/Year	Grab				
1,2-Dichloropropane	34541	0.13	0.53	•	-	1/Year	Grab				
1,3-Dichloropropylene	34561	0.13	0.53	-	-	1/Year	Grab				
Ethylbenzene	34371	0.1	0.25	•	•	1/Year	Grab				
Methyl Chloride	34418	1.11	2.7	-	•	1/month	Grab				
Methylene Chloride	34423	0.02	0.11	-	•	1/Year	Grab				
Tetrachloroethylene	34475	0.04	0.11	-	-	1/Year	Grab				
Toluene	34010	0.02	0.05		-	1/Year	Grab				
1,2-trans-						*					
Dichloroethylene	34546	0.02	0.04	•	-	1/Year	Grab				
1,1,1-Trichloroethane	34506	0.02	0.04	-	-	1/Year	Grab				
1,1,2-Trichloroethane	34511	0.02	0.09	*	-	1/Year	Grab				
Trichloroethylene	39180	0.02	0.05	•	•	1/Year	Grab				
Vinyl Chloride	39175	0.07	0.12		-	1/Year	Grab				
Acid Compounds											
2,4-Dimethylphenol	34 60 6	0.01	0.03	•	-	1/Year	Grab				
4,6-Dinitro-o-cresol	34657	0.05	0.19	-	•	1/Year	Grab				

Part 1 Permit No. Draft LA0003301

Page 32 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 541 continued)

Effluent Characteristic			Discharge I	Monitoring Requirements			
	Storet Code	(lbs/day, u Monthly Average	nless stated) Dally Maximum		r Units less stated) Daily Maximum	Measurement Frequency	Sample Type
2,4-Dinitrophenol	34616	0.81	2.86	-	-	1/Year	Grab
2-Nitrophenol	34591	0.04	0.15	•	-	1/Year	Grab
4-Nitrophenol	34646	0.11	0.38	-	-	1/Year	Grab
Phenol	34694	0.01	0.03	•	•	1/Year	Grab
Base Neutral Compound	ds						
Acenaphthene	34205	0.01	0.03	-	_	1/Year	Grab
Acenaphthylene	34200	0.01	0.03	•	_	1/Year	Grab
Anthracene	34220	0.01	0.03	-	•	1/Year	Grab
Benzo(a)anthracene	34526	0.01	0.03	•		1/Year	Grab
Benzo(a)pyrene	34247	0.01	0.03			1/Year	Grab
3,4-Benzofluoranthene	34230	0.01	0.03	•	_	1/Year	Grab
Benzo(k)Nuoranthene	34242	0.01	0,03	-	-	1/Year	Grab
Bis(2-ethylhexyl) phthalate	39100	0.06	0.17	-		1/Year	Grab
Chrysene	34320	0.01	0.03	-	•	1/Year	Grab
1,2-Dichlorobenzene	34536	0.13	0.53		-	1/Year	Grab
1,3-Dichlorobenzene	34566	0.10	0.25		•	1/Year	Grab
1.4-Dichlorobenzene	34571	0.10	0.25		•	1/Year	Grab
Diethyl phthalate	34336	0.03	0.08	•		1/Year	Grab
Dimethyl phthalate	34341	10.0	0.03		-	1/Year	Grab
Di-n-butyl phthalate	39110	0.01	0.03	-	-	1/Year	Grab
Fluoranthene	34376	0.02	0.04		•	1/Year	Grab
Fluorene	34381	0.01	0.03	•		1/Year	Grab
Hexachlorobenzene	39700	0.13	0.53	•	-	1/Year	Grab
Hexachlorobutadiene	34391	0.1	0.25	*	•	1/Year	Grab
Hexachloroethane	34396	0.13	0.53	-	4	1/Year	Grab
Naphthalene	34696	0.01	0.03	-	-	1/Year	Grab
Nitrobenzene	34447	1.49	4.27	-	-	1/Year	Grab
Phenanthrene	34461	0.01	0.03	•	•	1/Year	Grab
Pyrene	34469	0.01	0.03	•	•	1/Year	Grab
1,2,4-Trichtorobenzene	34551	0.13	0.53	-	-	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 541 (1531), at the point of the discharge piping sample point from the steam column, on the southwest side of Chlorinated Methanes Plant in Block 46, prior to mixing with other waters in CWR Canal A at Latitude 30°19′14″, Longitude 91°14′26″.

Page 33 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 551 (741) (LHC2) (estimated total outfall flow is 0.879 MGD), this internal outfall consists of the intermittent discharge of OCPSF process wastewater, OCPSF process area stormwater, once through cooling water, and utility wastewater from the LHC II Plant. This internal outfall discharges to CWR Canal F, through Internal Outfall 501 (116), and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic			Discharge Li	Monitoring Regulrements			
				Othe	er Units		
		(lbs/day, un	less stated)	(ug/l, un	less stated)		
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
Conventional							
BOD ₅ -mg/l	00310		•	30	80	2/Month	Grab
TSS · mg/l	00530	٠	•	46	149	2/Month	Grab
Nonconventional							
Flow - MGD	50050	Report	Report	-	*	Continuous	Recorder
Volatile Compounds							
Acrylonitrile	34215	-	-	94	232	1/Year	Grab
Benzene	34030	•	•	57	134	1/Year	Grab
Carbon Tetrachloride	32102	-	•	142	380	1/Year	Grab
Chlorobenzene	34301	•	-	142	380	1/Year	Grab
Chloroethane	85811	-	-	110	295	1/Year	Grab
Chloroform	32106	-	-	111	325	1/Year	Grab
1,1-Dichloroethane	3 44 96	-	•	22	59	1/Year	Grab
1,2-Dichloroethane	32103	-		180	574	1/Year	Grab
1,1-Dichloroethylene	34501	-		22	60	1/Year	Grab
1,2-Dichloropropane	34541	•	-	196	794	1/Year	Grab
1,3-Dichloropropylene	34561	•	-	196	794	1/Year	Grab
Ethylbenzene	34371	•	•	142	380	1/Year	Grab
Methyl Chloride	34418	-	•	110	295	1/Year	Grab
Methylene Chloride	34423	-	-	36	170	1/Year	Grab
Tetrachloroethylene	34475	-	•	52	1 64	1/Year	Grab
Toluene	34010	• •	•	28	74	1/Year	Grab
1,2-trans-							
Dichloroethylene	34546	-	-	25	66	1/Year	Grab
1,1,1-Trichloroethane	34506	-	-	22	59	1/Year	Grab
1,1,2-Trichloroethane	34511	-	-	32	127	1/Year	Grab
Trichloroethylene	39180	-	-	26	69	1/Year	Grab
Vinyl Chloride	39175	•	-	97	172	1/Year	Grab
Acid Compounds							
2,4-Dimethylphenol	34606	-	•	19	47	1/Year	Grab
4,6-Dinitro-o-cresol	34657	•	•	78	277	1/Year	Grab

Part I Permit No. Draft LA0003301

Page 34 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 551 continued)

Effluent Characteristic			Discharge Li	Monitoring Requirements			
	Storet Code	(ibs/day, un Monthly Average	less stated) Dally Maximum	(ug/l, un Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type
2,4-Dinitrophenol	34616	-		1207	4291	1/Year	Grab
2-Nitrophenol	34591	•	•	65	231	1/Year	Grab
4-Nitrophenol	34646	-	-	162	576	1/Year	Grab
Phenol	34694	•	-	19	47	1/Year	Grab
Base Neutral Compound	5						
Acenaphthene	34205	•	-	19	47	1/Year	Grab
Acenaphthylene	34200	-	-	19	47	1/Year	Grab
Anthracene	34220	-	•	19	47	1/Year	Grab
Benzo(a)anthracene	34526	-	-	19	47	1/Year	Grab
Benzo(a)pyrene	34247	• .	•	20	48	1/Year	Grab
3,4-Benzofluoranthene	34230	-	•	20	48	1/Year	Grab
Benzo(k)fluoranthene	34242	•	-	19	47	1/Year	Grab
Bis(2-ethylhexyl) phthalate	39100	•	-	95	258	1/Year	Grab
Chrysene	34320		-	19	47	1/Year	Grab
1,2-Dichlorobenzene	34536	-	-	196	794	1/Year	Grab
1,3-Dichlorobenzene	34566	_	-	142	380	1/Year	Grab
1,4-Dichlorobenzene	34571	_	-	142	380	1/Year	Grab
Diethyl phthalate	34336	*	-	46	113	1/Year	Grab
Dimethyl phthalate	34341	-	-	19	47	1/Year	Grab
Di-n-butyl phthalate	39110	-	-	20	43	1/Year	Grab
Fluoranthene	34376	-	-	22	54	1/Year	Grab
Fluorene	34381	-	•	19	47	1/Year	Grab
Hexachlorobenzene	39700	-	-	196	794	1/Year	Grab
Hexachlorobutadiene	34391	-	-	142	380	1/Year	Grab
Hexachloroethane	34396	W		196	794	1/Year	Grab
Naphthalene	34696	-	-	19	47	1/Year	Grab
Nitrobenzene	34447	-	•	2237	6402	1/Year	Grab
Phenanthrene	34461	•	-	19	47	1/Year	Grab
Pyrene	34469	-	-	20	48	1/Year	Grab
1,2,4-Trichlorobenzene	34551	-	• .	196	7 94	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 551 (741), at the point of discharge from the LHC II Plant on the western side of Block 48, prior to mixing with other waters in CWR Canal F at Latitude 30°19'27", Longitude 91°14'15".

Part I

Permit No. Draft LA0003301

Page 35 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 601 (117) (Canal G) (estimated total outfall flow is 25.9 MGD), this internal outfall consists of the continuous discharge of cooling water returns, fire deluge water, utility wastewater, non-process area stormwater, discharges from Internal Outfalls 631 (2001), 641 (3121), 621 (2241), 611 (1711), 651 (3001), and 551 (741), and discharges from embedded companies Air Products and Air Liquide. This internal outfall discharges to CWR Canal F, through Internal Outfall 501 (116) and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic			Discharge	Monitoring Requirements			
				Othe	er Units		
	((lbs/daγ, un	less stated)	(ug/l, un	less stated)		
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maxlmum	Measurement Frequency	Sample Type
Nonconventional							
Flow - MGD	50050	Report	Report	•	-	1/Month	Estimate
TOC - mg/l	00680		-	•	50	1/Quarter	Grab
Oil and Grease-mg/l	03582	-	•	•	15	1/Quarter	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): .

Internal Outfall 601 (117), at the point of discharge from the southern end of CWR Canal G, prior to mixing with other waters in CWR Canal F at Latitude 30°19′25″, Longitude 91°14′22″.

Page 36 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 611 (1711) (Vinyl) (estimated total outfall flow is 4.16 MGD), this internal outfall consists of the continuous discharge of OCPSF process wastewater, OCPSF process area stormwater, once through cooling water, and utility wastewater from the Vinyl II Plant. This internal outfall discharges to CWR Canal G, through Internal Outfall 601 (117), through Internal Outfall 501 (116), and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below;

Effluent Characteristi	<u>c</u>		Discharge L	Monitoring Requirements							
		Other Units									
		(lbs/day, u	ınless stated)	(ug/l, un	less stated)						
<u>Conventional/</u> Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type				
Conventional											
BOD ₅	00310	970	2,421	~		1/Quarter	Grab				
TSS	00530	1,412	4,326	•	-	1/Quarter	, Grab				
Nonconventional											
Flow - MGD	50050	Report	Report		•	Continuous	Recorder				
Volatile Compounds											
Acrylonitrile	34215	2.6	6.41	•	-	1/Year	Grab				
Benzene	34030	1.58	3.7	-	-	1/Year	Grab				
Carbon Tetrachloride	32102	3.92	10.5		-	1/Year	Grab				
Chlorobenzene	34301	3.92	10.5	7	~	1/Year	Grab				
Chloroethane	85811	3.04	8.15	•	-	1/Year	Grab				
Chloroform	32106	3.07	8.98	-	*	1/Month	Grab				
1,1-Dichloroethane	34496	0.61	1.63	-	-	1/Year	Grab				
1,2-Dichloroethane	32103	4.97	15.9	-	-	1/Month	Grab				
1,1-Dichloroethylene	34501	0.61	1.66	-	-	1/Year	Grab				
1,2-Dichloropropane	34541	5.42	21.9		-	1/Year	Grab				
1,3-Dichloropropylene	34561	5.42	21.9	-	-	1/Year	Grab				
Ethylbenzene	34371	3.92	10.5	~	•	1/Year	Grab				
Methyl Chloride	34418	3.04	8.15	₹		1/Year	Grab				
Methylene Chloride	34423	1	4.7	**	**	1/Year	Grab				
Tetrachloroethylene	34475	1.44	4.53	-	-	1/Year	Grab				
Toluene	34010	0.77	2.05	•	-	1/Year	Grab				
1,2-trans- Dichloroethylene	34546	0.69	1.82		~	1/Year	Grab				
1,1,1 Trichloroethane	34506	0.61	1.63	•		1/Year	Grab				
1,1,2-Trichloroethane	34511	0.88	3.51		h	1/Year	Grab				
Trichloroethylene	39180	0.72	1.91			1/Year	Grab				
Vinyt Chloride	39175	2.68	4.75	-	-	1/Year	Grab				
Acid Compounds											
2,4-Dimethylphenol	34606	0.53	1.3		-	1/Year	Grab				

Part I Permit No. Draft LA0003301

Page 37 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 611 continued)

Effluent Characteristic			Discharge L	Monitoring Regulrements			
	Storet Code	(lbs/day, u Monthly Average	nless stated) Daily Maximum	(ug/l, un Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type
4,6-Dinitro-o-cresol	34657	2.16	7.66	•	-	1/Year	Grab
2,4-Dinitrophenol	34616	33.4	119	-	•	1/Year	Grab
2-Nitrophenol	34591	1.8	6.38	•	_	1/Year	Grab
4-Nitrophenol	34646	4.48	15.9	•	•	1/Year	Grab
Phenol	34694	0.53	1.3	-	-	1/Year	Grab
Base Neutral Compour	nds						
Acenaphthene	34205	0.53	1.3	-		1/Year	Grab
Acenaphthylene	34200	0.53	1.3	-	-	1/Year	Grab
Anthracene	34220	0.53	1.3	-	-	1/Year	Grab
Benzo(a)anthracene	34526	0.53	1.3		•	1/Year	Grab
Benzo(a)pyrene	34247	0.55	1,33	•	-	1/Year	Grab
3,4-Benzofluoranthene	34230	0.55	1,33	-	-	1/Year	Grab
Benzo(k)fluoranthene	34242	0.53	1.3	-	-	1/Year	Grab
Bis(2-ethylhexyl)							
phthalate	39100	2.63	7,13	•	-	1/Year	Grab
Chrysene	34320	0.53	1.3	•	•	1/Year	Grab
1,2-Dichlorobenzene	34536	5.42	21.9	•	-	1/Year	Grab
1,3-Dichlorobenzene	34566	3.92	10.5		-	1/Year	Grab
1,4-Dichlorobenzene	34571	3.92	10.5	-	•	1/Year	Grab
Diethyl phthalate	34336	1.27	3.12	•	•	1/Year	Grab
Dimethyl phthalate	34341	0.53	1.3		•	1/Year	Grab
Di-n-butyl phthalate	39110	0.55	1.19	•	•	1/Year	Grab
Fluoranthene	34376	0.61	1.49	-	-	1/Year	Grab
Fluorene	34381	0.53	1.3	-	-	1/Year	Grab
Hexachlorobenzene	39700	5.42	21.9	•	-	1/Year	Grab
Hexachlorobutadiene	34391	3.92	10.5		-	1/Year	Grab
Hexachloroethane	34396	5.42	21.9	+	-	1/Year	Grab
Naphthalene	34696	0.53	1.3	•	· -	1/Year	Grab
Nitrobenzene	34447	61.8	177	•	-	1/Year	Grab
Phenanthrene	34461	0.53	1.3	•	•	1/Year	Grab
Pyrene	34469	0.55	1.33	•	•	1/Year	Grab
1,2,4-Trichlorobenzene	34551	5.42	21.9	₹	•	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 611 (1711), at the point of discharge from the ditch at the northeast corner of the Vinyl II Plant in Block 66, prior to mixing with other waters in CWR Canal G at Latitude 30°19'26", Longitude 91°14'30".

Page 38 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 621 (2241) (LHC 3) (estimated total outfall flow is 0.409 MGD), this internal outfall consists of the intermittent discharge of OCPSF process wastewater, OCPSF process area stormwater, and utility wastewater from Light Hydrocarbons III Plant. This Internal outfall discharges to CWR Canal G, through Internal Outfall 601 (117), through Internal Outfall 501 (116), and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic			Discharge Lin	Monitoring Requirements							
		Other Units									
		(lbs/day	, unless stated)	(ug/l, unl	ess stated)						
Conventional/ Nonconventional	Storet Code	Monthly Average	Dally Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type				
Conventional											
BOD ₅ - mg/l	00310	-	-	30	80	1/Quarter	Grab				
TSS · mg/l	00530	-	•	46	149	1/Quarter	Grab				
Nonconventional											
Flow - MGD	50050	Report	Report	-		1/Week	Estimate				
Volatile Compounds	•				•						
Acrylonitrile	34215	-	-	94	232	1/Year	Grab				
Benzene	34030	-		57	134	1/Year	Grab				
Carbon Tetrachloride	32102	-	<u></u>	142	380	1/Year	Grab				
Chlorobenzene	34301	-	•	142	380	1/Year	Grab				
Chloroethane	85811		-	110	295	1/Year	Grab				
Chloraform	32106		-	111	325	1/Year	Grab				
1,1-Dichloroethane	34496	-	•	22	59	1/Year	Grab				
1,2-Dichloroethane	32103	•	-	180	574	1/Year	Grab				
1,1-Dichloroethylene	34501	•	_	22	60	1/Year	Grab				
1,2-Dichloropropane	34541		-	196	7 9 4	1/Year	Grab				
1,3-Dichloropropylene	34561	•	-	196	794	1/Year	Grab				
Ethylbenzene	34371	-	-	142	380	1/Year	Grab				
Methyl Chloride	34418		*	110	295	1/Year	Grab				
Methylene Chloride	34423	-	*	36	170	1/Year	Grab				
Tetrachloroethylene	34475	•	-	52	164	1/Year	Grab				
Toluene	34010		-	28	74	1/Year	Grab				
1,2-trans-											
Dichloroethylene	34546	-	-	25	66	1/Year	Grab				
1,1,1-Trichloroethane	34506	•	•	22	59	1/Year	Grab				
1,1,2-Trichloroethane	34511	-	-	32	127	1/Year	Grab				
Trichloroethylene	39180	•	-	26	69	1/Year	Grab				
Vinyl Chloride	39175	•	•	97	172	1/Year	Grab				
Acid Compounds							•				
2,4-Dimethylphenol	34606	-	-	19	47	1/Year	Grab				
4,6-Dinitro-o-cresol	34657	•	-	78	277	1/Year	Grab				

Part I Permit No. Draft LA0003301

Page 39 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 621 continued)

Effluent Characteristic	i		Discharge Li	Monitoring Requirements			
		(lbc/day u	inless stated)		r Units ess stated)		
	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Dally Maximum	Measurement Frequency	Sample Type
2,4-Dinitrophenol	34616	•	•	1207	4291	1/Year	Grab
2-Nitrophenol	34591	•	•	65	231	1/Year	Grab
4-Nitrophenol	34646	s *	-	162	576	1/Year	Grab
Phenol	34694	•	•	19	47	1/Year	Grab
Base Neutral Compoun	ı <u>ds</u>						
Acenaphthene	34205	~		19	47	1/Year	Grab
Acenaphthylene	34200	•	<u>.</u>	19	47	1/Year	Grab
Anthracene	34220	-	•	19	47	1/Year	Grab
Benzo(a)anthracene	34526	•		19	47	1/Year	Grab
Benzo(a)pyrene	34247	•	•	20	48	1/Year	Grab
3,4-Benzofluoranthene	34230	-	•	20	48	1/Year	Grab
Benzo(k)fluoranthene	34242	•	-	19	47	1/Year	Grab
8is(2-ethylhexyl) phthalate	39100	-		95	258	1/Year	Grab
Chrysene	34320	-	-	19	47	1/Year	Grab
1,2-Dichlorobenzene	34536	٠	•	196	794	1/Year	Grab
1,3-Dichlorobenzene	34566	•		142	380	1/Year	Grab
1,4-Dichlorobenzene	34571	•	÷	142	380	1/Year	Grab
Diethyl phthalate	34336	•	. *	46	113	1/Year	Grab
Dimethyl phthalate	34341	-		19	47	1/Year	Grab
Di-n-butyl phthalate	39110	-	-	20	43	1/Year	Grab
Fluoranthene	34376	-	-	22	54	1/Year	Grab
fluorene	34381	•	-	19	47	1/Year	Grab
Hexachlorobenzene	39700	-	•	196	7 94	1/Year	Grab
Hexachlorobutadiene	34391	•	•	142	380	1/Year	Grab
Hexachloroethane	34396	-		196	794	1/Year	Grab
Naphthalene	34696	-	-	19	47	1/Year	Grab
Nitrobenzene	34447	-	•	2237	6402	1/Year	Grab
Phenanthrene	34461		-	19	47	1/Year	Grab
Pyrene	34469	•	-	20	48	1/Year	Grab
1,2,4-Trichlorobenzene	34551	•	-	196	794	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 621 (2241), at the point of discharge from the central sump located at the southeast corner of the LHC III Plant in Block 68, prior to mixing with other waters in CWR Canal G at Latitude 30°19'30", Longitude 91°14'28".

Page 40 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the shutdown of the Vinyl II Plant (including cessation of discharges from the plant) (*1) the permittee is authorized to discharge from:

Internal Outfall 631 (2001) (WW Treatment) (Phase I) (estimated total outfall flow is 17.9 MGD), this internal outfall consists of the continuous discharge of OCPSF process wastewater (including wastewater from the INEOS facility), OCPSF process area stormwater, sanitary wastewater, utility wastewater, and OCPSF wastewater (landfill operations) from the Environmental Operation Plant. This internal outfall discharges to CWR Canal G, through Internal Outfall 601 (117), through Internal Outfall 501 (116), and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic		Discharge L	Monitoring Requirements				
		(ibs/day, unless stated)		(ug/l, un	less stated)		
Conventional/ Nonconventional Conventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
BOD _S	00310	4,516	11,814	•	•	3/Week	24 Hr Composite 24 Hr
TSS	00530	6,710	21,356	-	-	4/Week	Composite
Nonconventional							•
Flow - MGD	50050	Report	Report	•	•	Continuous	Recorder
Metals		•					
Total Copper	01042	202	471	*	-	1/Week	Grab
Volatile Compounds							
Acrylonitrile	34215	13.4	33.7	•	-	1/Year	Grab
Benzene	34030	5.15	18.9	•	• .	1/Year	Grab
Carbon Tetrachloride	32102	2.51	5.29	•	•	1/Year	Grab
Chlorobenzene	34301	2.09	3.9	-	-	1/Year	Grab
Chloroethane	85811	14.5	37.3	•	-	1/Year	Grab 24 Hr
Chlaroform	32106	2.92	6.41	•	-	1/Week	Composite
1,1-Dichloroethane	34496	3.06	8.22	•	•	1/Year	Grab 24 Hr
1,2-Dichloroethane	32103	9.5	29.4	-	•	2/Month	Composite
1,1-Dichloroethylene	34501	2.23	3.48	-	-	1/Year	Grab 24 Hr
1,2-Dichloropropane	34541	21,3	32	-	•	2/Month	Composite 24 Hr
1,3-Dichloropropylene	34561	4.04	6.13	-	-	1/Week	Composite
Ethylbenzene	34371	4.46	15	-	~	1/Year	Grab 24 Hr
Methyl Chloride	34418	12	26.5	*	•	2/Month	Composite 24 Hr
Methylene Chloride	34423	5.57	12.4	•	-	1/Month	Composite
Tetrachloroethylene	34475	3.06	7.8	-	-	1/Year	Grab
Toluene 1,2-trans-	34010	3.62	11.1	•	*	1/Year	Grab
Dichloroethylene	34546	2.92	7.52		-	1/Year	Grab
1,1,1-Trichloroethane	34506	2.92	7.52	_	-	1/Year	Grab
						-	· ··

Part I Permit No. Draft LA0003301

Page 41 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 631- Phase I continued)

Effluent Characteristic			Discharge Lim	Monitoring Requirements				
				Othe	r Units			
	Storet Code	(lbs/day, unl Monthly Average	ess stated) Dally Maximum	(ug/l, uni Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type	
1,1,2-Trichloroethane	34511	2.92	7.52	•		1/Year	Grab	
Trichloroethylene	39180	2.92	7.52	•	-	1/Year	Grab	
Vinyl Chloride	39175	14.5	37.3	-	-	1/Year	Grab	
Acid Compounds								
2-Chlorophenol	34586	4.32	13.6	•	-	1/Year	Grab	
2,4-Dichlorophenol	34601	5.43	15.6	•	-	1/Year	Grab	
2,4-Dimethylphenol	34606	2.51	5.01	-	-	1/Year	Grab	
4,6-Dinitro-o-cresol	34657	10.9	38.6	•	-	1/Year	Grab	
2,4-Dinitrophenol	34616	9.9	17.1	•	•	1/Year	Grab	
2-Nitrophenol	34591	5.71	9.6	•	•	1/Year	Grab	
4-Nitrophenol	34646	10	17.3	•	•	1/Year	Grab	
Phenol	34694	2.09	3.62	-	•	1/Year	Grab	
Base Neutral Compoun	ıds							
Acenaphthene	34205	3.06	8.22	•	•	1/Year	Grab	
Acenaphthylene	34200	3.06	8.22	•	•	1/Year	Grab	
Anthracene	34220	3.06	8.22	•	-	1/Year	Grab	
Benzo(a)anthracene	34526	3.06	8.22	-	-	1/Year	Grab	
Benzo(a)pyrene	34247	3.2	8.5	•	•	1/Year	Grab	
3,4-Benzofluoranthene	34230	3.2	8.5	•	-	1/Year	Grab	
Benzo(k)fluoranthene Bis(2-ethylhexyl)	34242	3.06	8.22	-	-	1/Year	Grab	
phthalate	39100	14.3	38.9	•	-	1/Year	Grab	
Chrysene	34320	3.06	8.22		-	1/Year	Grab	
1,2-Dichlorobenzene	34536	10.7	22.7	*	•	1/Year	Grab	
1,3-Dichlorobenzene	34566	4.32	6.13	-	-	1/Year	Grab	
1,4-Dichlorobenzene	34571	2.09	3.9	•	•	1/Year	Grab	
Diethyl phthalate	34336	11.3	28.3	-	•	1/Year	Grab	
Dimethyl phthalate	34341	2.65	6.55	•	•	1/Year	Grab	
Di-n-butyl phthalate	39110	3.76	7.94	•	•	1/Year	Grab	
2,4-Dinitrotoluene	34611	15.7	39.7	-	-	1/Year	Grab	
2,6-Dinitrotoluene	34626	35.5	89		-	1/Year	Grab	
Fluoranthene	34376	3.48	9.5	•	•	1/Year	Grab	
Fluorene	34381	3.46	9.28		-	1/Year	Grab	
Hexachlorobenzene	39700	2.09	3.9	•	-	1/Year	Grab	
Hexachlorobutadiene	34391	2.79	6.82	•	-	1/Year	Grab	
Hexachloroethane	34396	2.92	7.52	•	-	1/Year	Grab	
Naphthalene	34696	3.06	8.22	•	-	1/Year	Grab	
Nitrobenzene	34447	3.76	9.5	-	-	1/Year	Grab	
Phenanthrene	34461	3.06	8.22	-	٠	1/Year	Grab	
Pyrene	34469	3.48	9.3	-	•	1/Year	Grab	

Page 42 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 631- Phase I continued)

Effluent Characteristic			Discharge Lim	Monitoring Requirements				
			Other Units					
	Storet	(ibs/day, un Monthly	less stated) Daily	(ug/l, un Monthly	less stated) Dally	Measurement		
	Code	Average	Maximum	Average	Maximum	Frequency	Sample Type	
1,2,4-Trichlorobenzene	34551	9.5	19.5	-		1/Year	Grab	

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 631 (2001), at the point of discharge from the effluent ditch in associated with the Environmental Operations in Block 80, prior to mixing with other waters in CWR Canal G at Latitude 30°19′53″, Longitude 91°14′22″.

FOOTNOTE(S):

(*1) The permittee shall notify the Office of Environmental Services, the Office of Environmental Compliance – Permit Compliance Unit, and the Capital Regional Office in writing at least 30 days prior to discharging under the Phase II conditions.

Page 43 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the shutdown of the Vinyl II Plant (including cessation of discharges from the plant) and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 631 (2001) (WW Treatment) (Phase II) (estimated total outfall flow is 17.6 MGD), this internal outfall consists of the continuous discharge of OCPSF process wastewater (including wastewater from the INEOS facility), OCPSF process area stormwater, sanitary wastewater, utility wastewater, and OCPSF wastewater (landfill operations) from the Environmental Operation Plant. This internal outfall discharges to CWR Canal G, through Internal Outfall 601 (117), through Internal Outfall 501 (116), and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic		<u>Discharge l</u>	imitations	Monitoring Requirements			
		(lbs/day, uni	Other Units (lbs/day, unless stated) (ug/l, unless stated)				
Conventional/ Nonconventional Conventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
BOD₅	00310	4,502	11,780		•	3/Week	24 Hr Composite
TSS	00530	6,650	21,158	•	-	4/Week	24 Hr Composite
Nonconventional							•
Flow - MGD	50050	Report	Report	-	•	Continuous	Recorder
Metals							
Total Copper	01042	198	462	+	•	1/Week	Grab
Volatile Compounds					-		
Acrylonitrile	34215	13.2	33.2	-	-	1/Year	Grab
Benzene	34030	5.07	18.6	-	-	1/Year	Grab
Carbon Tetrachloride	32102	2.47	5.21	-	•	1/Year	Grab
Chlorobenzene	34301	2.06	3.84	-	-	1/Year	Grab
Chloroethane	85811	14.3	36.7	•	-	1/Year	Grab 24 Hr
Chloroform	32106	2.88	6.31	•	•	1/Week	Composite
1,1-Dichloroethane	34496	3.02	8.09	-	•	i/Year	Grab 24 Hr
1,2-Dichloroethane	32103	9.3	28.9	-	-	1/Year	Composite
1,1-Dichloroethylene	34501	2.19	3.43	4	•	1/Year	Grab 24 Hr
1,2-Dichloropropane	34541	21	31.5	-	-	2/Month	Composite 24 Hr
1,3-Dichloropropylene	34561	3.97	6.03	٠	•	1/Week	Composite
Ethylbenzene	34371	4.39	14.8	-	•	1/Year	Grab 24 Hr
Methyl Chloride	34418	11.8	26	•	•	2/Month	Composite 24 Hr
Methylene Chloride	34423	5.48	12.2	-	-	1/Month	Composite
Tetrachloroethylene	34475	3.02	7.68	•	•	1/Year	Grab
Toluene 1,2-trans-	34010	3.56	11	•	-	1/Year	Grab
Dichloroethylene	34546	2.88	7.4	•	-	1/Year	Grab
1,1,1-Trichloroethane	34506	2.88	7.4	•	-	1/Year	Grab

Part I Permit No. Draft LA0003301

Page 44 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 631 - Phase II continued)

Effluent Characteristic			Discharge Lim	Monitoring Requirements			
		(lbs/dav. uni	(lbs/day, unless stated) (ug/l, unless stated)				
	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
1,1,2-Trichloroethane	34511	2.88	7.4		-	1/Year	Grab
Trichloroethylene	39180	2.88	7.4		-	1/Year	Grab
Vinyl Chloride	39175	14.3	36.7		•	1/Year	Grab
Acid Compounds 2-Chlorophenol	34586	4.25	13.4			4.07	
2,4-Dichlorophenol	34601			•	•	1/Year	Grab
2,4-Dimethylphenol	34606	5.35	15.4	-	•	1/Year	Grab
4,6-Dinitro-o-cresol	34657	2.47	4.93	•	•	1/Year	Grab
•		10.7	38	-	•	1/Year	Grab
2,4-Dinitrophenol	34616	9.7	16.9	•	•	1/Year	Grab
2-Nitrophenol	34591	5.62	9.5	-	•	1/Year	Grab
4-Nitrophenol	34646	9.9	17	•	•	1/Year	Grab
Phenol	34694	2.06	3.56	•	-	1/Year	Grab
Base Neutral Compoun	dş			•			
Acenaphthene	34205	3.02	8.09	•	-	1/Year	Grab
Acenaphthylene	34200	3.02	8.09	-		1/Year	Grab
Anthracene	34220	3.02	8.09	•	-	1/Year	Grab
Benzo(a)anthracene	34526	3.02	8.09	-		1/Year	Grab
Benzo(a)pyrene	34247	3.15	8.36	•	•	1/Year	Grab
3,4-Benzofluoranthene	34230	3.15	8.36		•	1/Year	Grab
Benzo(k)fluoranthene Bis(2-ethylhexyl)	34242	3.02	8.09	-	-	1/Year	Grab
phthalate	39100	14.1	38,2	•	•	1/Year	Grab
Chrysene	34320	3.02	8.09	•	-	1/Year	Grab
1,2-Dichlorobenzene	34536	10.6	22.3	-		1/Year	Grab
1,3-Dichlorobenzene	34566	4.25	6.03	*	٠	1/Year	Grab
1,4-Dichlorobenzene	34571	2.06	3.84	μ	-	1/Year	Grab
Diethyl phthalate	34336	11.1	27.8	-	-	1/Year	Grab
Dimethyl phthalate	34341	-2.60	6.44	*	•	1/Year	Grab
Di-n-butyl phthalate	39110	3.7	7.81	-	-	1/Year	Grab
2,4-Dinitrotoluene	34611	15.5	39.1	•	-	1/Year	Grab
2,6-Dinitrotoluene	34626	35	88	-		1/Year	Grab
Fluoranthene	34376	3.43	9.3	•	•	1/Year	Grab
Fluorene	34381	3.02	8.09		•	1/Year	Grab
Hexachlorobenzene	39700	2.06	3.84	•	•	1/Year	Grab
Hexachlorobutadiene	34391	2.74	6.72	*	-	1/Year	Grab
Hexachforoethane	34396	2.88	7.4	•		1/Year	Grab
Naphthalene	34696	3.02	8.09	•	•	1/Year	Grab
Nitrobenzene	34447	3.7	9.3	٠	-	1/Year	Grab
Phenanthrene	34461	3.02	8.09		-	1/Year	Grab
Pyrene	34469	3.43	9.2	*	•	1/Year	Grab

Page 45 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 631 - Phase II continued)

Effluent Characteristic			Discharge Lim	Monitoring Requirements			
	Storet Code	(lbs/day, uni Monthly Average	less stated) Daily Maximum	(ug/l, un Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type
1,2,4-Trichlorobenzene	34551	9.3	19.2		-	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 631 (2001), at the point of discharge from the effluent ditch in associated with the Environmental Operations in Block 80, prior to mixing with other waters in CWR Canal G at Latitude 30°19'53", Longitude 91°14'22".

Part I Permit No. Draft LA0003301

Page 46 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 641 (3121) (Poly C) (estimated total outfall flow is 0.568 MGD), this internal outfall consists of the continuous discharge of OCPSF process wastewater, OCPSF process area stormwater, and utility wastewater from the Polyethylene C Plant. This internal outfall discharges to the CWR Canal G, through Internal Outfall 601 (117), through Internal Outfall 501 (116), and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic			Discharge Lin	Monitoring Requirements			
		Other Units					-
		(lbs/day, u	nless stated)	(ug/l, un	less stated)		
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
<u>Conventional</u>							
BOD ₅	00310	101	194	-	•	1/Quarter	Grab
TSS	00530	126	294	•	•	1/Quarter	Grab
Nonconventional							
Flow - MGD	50050	Report	Report	-	-	1/Week	Estimate
Yolatile Compounds					•		
Acrylonitrile	34215	0.14	0.35	-	-	1/Year	Grab
Benzene	34030	0.09	0.2	-	-	1/Year	Grab
Carbon Tetrachloride	32102	0.22	0.58	•	-	1/Year	Grab
Chlorobenzene	34301	0.22	0.58	-	-	1/Year	Grab
Chloroethane	85811	0.17	0.45	-	-	1/Year	Grab
Chloroform	32106	0.17	0.49	•	-	1/Year	Grab
1,1-Dichloroethane	34496	0.03	0.09	-	-	1/Year	Grab
1,2-Dichloroethane	32103	0.27	0.87	•	•	1/Year	Grab
1,1-Dichloroethylene	34501	0.03	0.09	-	•	1/Year	Grab
1,2-Dichloropropane	34541	0.3	1.2	-	-	1/Year	Grab
1,3-Dichloropropylene	34561	0.3	1.2	-	-	1/Year	Grab
Ethylbenzene	34371	0.22	0.58	٠	-	1/Year	Grab
Methyl Chloride	34418	0.17	0.45	-	-	1/Year	Grab
Methylene Chloride	3 44 23	0.06	0.26	•	•	1/Year	Grab
Tetrachloroethylene	34475	0.08	0.25	-	•	1/Year	Grab
Toluene	34010	0.04	0.11	•	-	1/Year	Grab
1,2-trans- Dichloroethylene	34546	0.04	0.1	-		1/Year	Grab
1,1,1-Trichloroethane	34506	0.03	0.09	-	-	1/Year	Grab
1,1,2-Trichloroethane	34511	0.05	0.19	_	-	1/Year	Grab
Trichloroethylene	39180	0.04	0.11			1/Year	Grab
Vinyl Chloride	39175	0.15	0.26	•	•	1/Year	Grab
Acid Compounds							
2,4-Dimethylphenol	34606	0.03	0.07	-		1/Year	Grab
4,6-Dinitro-o-cresol	34657	0.12	0.42	-	*	1/Year	Grab
•							

Page 47 AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Internal Outfall 641 continued)

Effluent Characteristic			Discharge Lin	nitations		Monitoring R	equirements
				Othe	r Units		
	Storet Code	(lbs/day, un Monthly Average	less stated) Dally Maximum	(ug/l, un Monthly Average	less stated) Daily Maximum	Measurement Frequency	Sample Type
2,4-Dinitrophenol	34616	1.83	6.5		-	1/Year	Grab
2-Nitrophenol	34591	0.1	0.35	-	•	1/Year	Grab
4-Nitrophenol	34646	0.25	0.87		-	1/Year	Grab
Phenol	34694	0.03	0.07	*	•	1/Year	Grab
Base Neutral Compoun	dş						
Acenaphthene	34205	0.03	0.07	•	-	1/Year	Grab
Acenaphthylene	34200	0.03	0.07	•	-	1/Year	Grab
Anthracene	34220	0.03	0.07	-	•	1/Year	Grab
Benzo(a)anthracene	34526	0.03	0.07	•	-	1/Year	Grab
Benzo(a)pyrene	34247	0.03	0.07	•	-	1/Year	Grab
3,4-Benzofluoranthene	34230	0.03	0.07		-	1/Year	Grab
Benzo(k)fluoranthene	34242	0.03	0.07		•	1/Year	Grab
Bis(2-ethylhexyl)							
phthalate	39100	0.14	0.39	•	•	1/Year	Grab
Chrysene	34320	0.03	0.07	•	•	1/Year	Grab
1,2-Dichlorobenzene	34536	0.3	1.2	•	-	1/Year	Grab
1,3-Dichlorobenzene	34566	0.22	0.58	•	-	1/Year	Grab
1,4-Dichlorobenzene	34571	0.22	0.58	-	-	1/Year	Grab
Diethyl phthalate	34336	0.07	0.17	•	-	1/Year	Grab
Dimethyl phthalate	34341	0.03	0.07	•	-	1/Year	Grab
Di-n-butyl phthalate	39110	0.03	0.07	-	٠	1/Year	Grab
Fluoranthene	34376	0.033	0.08	•	•	1/Year	Grab
Fluorene	34381	0.03	0.07	-	-	1/Year	Grab
Hexachlorobenzene	39700	0.3	1.2	•	-	1/Year	Grab
Hexachlorobutadiene	34391	0.22	0.58	•	-	1/Year	Grab
Hexachloroethane	34396	0.3	1.2	-	•	1/Year	Grab
Naphthalene	34696	0.03	0.07	•	-	1/Year	Grab
Nitrobenzene	34447	3.39	9.7	•	•	1/Year	Grab
Phenanthrene	34461	0.03	0.07	•	•	1/Year	Grab
Pyrene	34469	0.03	0.07	•	•	1/Year	Grab
1,2,4-Trichlorobenzene	34551	0.3	1.2	-	•	1/Year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 641 (3121), at the point of discharge from the effluent welr at the pond located on the northern side of the Polyethylene C Plant in Block 86, prior to mixing with other waters in CWR Canal G at Latitude 30°19'38", Longitude 91°14'40".

Part I

Permit No. Draft LA0003301

Page 48

AI No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Internal Outfall 651 (3001) (SW Landfill) (estimated total outfall flow is 0.047 MGD), this internal outfall consists of the continuous discharge of recovered groundwater from the Northwest Landfill. This internal outfall discharges to CWR Canal G, through Internal Outfall 601 (117), through Internal Outfall 501 (116), and then to Outfall 001.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic	Discharge Limitations			Monitoring Requirements			
				Othe	r Units		
		(ibs/day, ur	iless stated)	(ug/l, un	less stated)		
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
Nonconventional							
Flow - MGD	50050	Report	Report	-	_	1/Month	Estimate
TOC – mg/i	00680		-	N/A	55	1/Quarter	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Internal Outfall 651 (3001), at the point of discharge from the pump at the Northwest Landfill on the northern side of the Polyethylene C Plant in Block 86 at the discharge piping, prior to mixing with other waters in CWR Canal G at Latitude 30°20'03", Longitude 91°15'02".

Page 49 Al No. 1409

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued)

During the period beginning the effective date and lasting through the expiration date the permittee is authorized to discharge from:

Outfall 002 (Final) (estimated total outfall flow is 0.211 MGD), this final outfall consists of the continuous discharge from Tank Farm Block 110 to the Mississippi River. Discharge sources include secondary containment stormwater and utility wastewater.

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic		Discharge Limitations				Monitoring Requirements	
•				Othe	r Units	•	
		(lbs/day, u	nless stated)	(ug/l, unk	ess stated)		
Conventional/ Nonconventional	Storet Code	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
Nonconventional	İ						
Flow - MGD TOC - mg/l	50050 00680	Report	Report	*	55	1/Month 1/Quarter	Estimate Grab
pH Minimum/Maximum Values (Standard Units)	00400	-	-	6.0 (*1) (Min)	9.0 (*1) (Max)	1/Month	Grab

There shall be no discharge of floating solids or visible foam in other than trace amounts.

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

Outfall 902, at the point of discharge from the south end of the oll water separator in Tank Farm Block 110, prior to pumping the discharge over the levee and into the Mississippi River at Latitude 30°20'25", Longitude 91°14'30".

FOOTNOTE(S):

(*1) The permittee shall report on the Discharge Monitoring Reports both the minimum and maximum instantaneous pH values measured.

Page 1 AI No. 1409

PART II

OTHER REQUIREMENTS

In addition to the standard conditions required in all permits and listed in Part III, the Office has established the following additional requirements in accordance with the Louisiana Water Quality Regulations.

- A. The Department of Environmental Quality reserves the right to impose more stringent discharge limitations or additional restrictions, if necessary, to maintain the water quality integrity and the designated uses of the receiving water bodies.
- B. This permit does not in any way authorize the permittee to discharge a pollutant not listed or quantified in the application or limited or monitored for in the permit.
- C. Authorization to discharge pursuant to the conditions of this permit does not relieve the permittee of any liability for damages to state waters or private property. For discharges to private land, this permit does not relieve the permittee from obtaining proper approval from the landowner for appropriate easements and rights of way.
- D. For definitions of monitoring and sampling terminology see Part III, Section F.
- E. 24-HOUR ORAL REPORTING: DAILY MAXIMUM LIMITATION VIOLATIONS

Under the provisions of Part III.D.6.e.(3) of this permit, violations of daily maximum limitations for the following pollutants shall be reported orally to the Office of Environmental Compliance within 24 hours from the time the permittee became aware of the violation followed by a written report in five days.

METALS

Total Copper

VOLATILE COMPOUNDS

Acrylonitrile

Benzene

Carbon Tetrachloride

Chlorobenzene

Chloroethane

Chloroform

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethylene

1,2-trans-Dichloroethylene

1,2-Dichloropropane

1,3-Dichloropropylene

Ethylbenzene

Methyl Chloride

Methylene Chloride

Tetrachloroethylene

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethylene

Page 2 AI No. 1409

Vinyl Chloride

ACID COMPOUNDS

- 2-Chlorophenol
- 2,4-Dichlorophenol
- 2,4-Dimethylphenol
- 4,6-Dinitro-o-cresol
- 2,4-Dinitrophenol
- 2-Nitrophenol
- 4-Nitrophenol

Phenol

BASE NEUTRAL COMPOUNDS

Acenaphthene

Acenaphthylene

Anthracene

Benzo(a) anthracene

Benzo(a)pyrene

3,4-Benzofluoranthene

Benzo(k) fluoranthene

Bis(2-ethylhexyl)phthalate

Chrysene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Diethyl phthalate

Dimethyl phthalate

Di-n-butyl phthalate

2,4-Dinitrotoluene

2,6-Dinitrotoluene

Fluoranthene

Fluorene

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Naphthalene

Nitrobenzene

Phenanthrene

Pyrene

1,2,4-Trichlorobenzene

F. COMPOSITE SAMPLING (24-HOUR)

1. STANDARD PROVISIONS

Unless otherwise specified in this permit, the term "24-hour composite sample" means a sample consisting of a minimum of four (4) aliquots of effluent collected at regular intervals over a normal 24-hour operating day and combined in proportion to flow or a sample continuously collected in proportion to flow over a normal 24-hour operating period.

2. VOLATILE COMPOUNDS

For the "24-hour composite" sampling of volatile compounds using EPA Methods 601, 602, 603, 624, 1624, or any other 40 CFR Part 136 (See LAC 33:IX.4901) method approved after the effective date of the permit, the permittee shall manually collect four (4) aliquots (grab samples) in clean zero head-space containers at regular intervals during the actual hours of discharge during the 24-hour sampling period using sample collection, preservation, and

Page 3 AI No. 1409

handling techniques specified in the test method. These aliquots must be combined in the laboratory to represent the composite sample of the discharge. One of the following alternative methods shall be used to composite these aliquots.

- a. Each aliquot is poured into a syringe. The plunger is added, and the volume in the syringe is adjusted to 1-1/4 ml. Each aliquot (1-1/4 ml.) is injected into the purging chamber of the purge and trap system. After four (4) injections (total 5 ml.), the chamber is purged. Only one analysis or run is required since the aliquots are combined prior to analysis.
- b. Chill the four (4) aliquots to 6 Degrees Centigrade. These aliquots must be of equal volume. Carefully pour the contents of each of the four aliquots into a 250-500 ml. flask which is chilled in a wet ice bath. Stir the mixture gently with a clean glass rod while in the ice bath. Carefully fill two (2) or more clean 40 ml. zero head-space vials from the flask and dispose of the remainder of the mixture. Analyze one of the aliquots to determine the concentration of the composite sample. The remaining aliquot(s) are replicate composite samples that can be analyzed if desired or necessary.
- c. Alternative sample compositing methods may be used following written approval by this Office.

The individual samples resulting from the application of these compositing methods shall be analyzed following the procedures specified for the selected test method. The resulting analysis shall be reported as the daily composite concentration.

As an option to the above compositing methods, the permittee may manually collect four (4) aliquots (grab samples) in clean zero head-space containers at regular intervals during the actual hours of discharge during the 24-hour sampling period using sample collection, preservation, and handling techniques specified in the test method. A separate analysis shall be conducted for each discrete grab sample following the approved test methods. The determination of daily composite concentration shall be the arithmetic average (weighted by flow) of all grab samples collected during the 24-hour sampling period.

G. 40 CFR PART 136 (See LAC 33:IX.4901) ANALYTICAL REQUIREMENTS

Unless otherwise specified in this permit, monitoring shall be conducted according to analytical, apparatus and materials, sample collection, preservation, handling, etc., procedures listed at 40 CFR Part 136, and in particular, Appendices A, B, and C (See LAC 33:IX.4901).

H. FLOW MEASUREMENT "ESTIMATE" SAMPLE TYPE

If the flow measurement sample type in Part I is specified as "estimate", flow measurements shall not be subject to the accuracy provisions established at Part III.C.6 of this permit. The daily flow value may be estimated using best engineering judgement.

Page 4 AI No. 1409

1. ph RANGE EXCURSION PROVISIONS

Where a permittee continuously measures the pH of wastewater as a requirement or option in a Louisiana Pollutant Discharge Elimination System (LPDES) permit, the permittee shall maintain the pH of such wastewater within the range set forth in the permit, except that excursions from the range are permitted, provided:

- 1. The total time during which the pH values are outside the required range of pH values shall not exceed 446 minutes in any calendar month; and
- No individual excursion from the range of pH values shall exceed 60 minutes.

For the purposes of this section, an "excursion" is an unintentional and temporary incident in which the pH value of discharge wastewater exceeds the range set forth in the permit.

J. MINIMUM QUANTIFICATION LEVEL (MQL)

If any individual analytical test result is less than the minimum quantification level listed below, a value of zero (0) may be used for that individual result for the Discharge Monitoring Report (DMR) calculations and reporting requirements.

NONCONVENTIONAL	MQL (µq/L)
Phenolics, Total Recoverable (4AAP)	5
Chlorine (Total Residual)	100
3-Chlorophenol	10
4-Chlorophenol	10
2,3-Dichlorophenol	10
2,5-Dichlorophenol	10
2,6-Dichlorophenol	10
3,4-Dichlorophenol	10
2,4-D	10
2,4,5-TP (Silvex)	4

METALS AN	CYANIDE	MQL (µg/L)
Antimony	(Total)	60
Arsenic	(Total)	10
Beryllium	(Total)	5
Cadmium	(Total)	1
Chromium	(Total)	10
Chromium	(3+)	10
Chromium	(6+)	10
Copper	(Total)	10
Lead	(Total)	5
Mercury	(Total)	0.2
Molybdenut	m (Total)	30
Nickel	(Total) Freshwater	40
Nickel	(Total) Marine	5
Selenium	(Total)	5
Silver	(Total)	2
Thallium	(Total)	10
Zinc	(Total)	20
Cyanide	(Total)	20

Page 5 AI No. 1409

DIOXIN 2,3,7,8-TCDD	MQL (µg/L) 0.00001
VOLATILE COMPOUNDS Acrolein	MQL (µg/L)
·	50
Acrylonitrile Benzene	50
	10
Bromoform	10
Carbon Tetrachloride	10
Chlorobenzene	10
Chlorodibromomethane	10
Chloroethane	50
2-Chloroethylvinylether	10
Chloroform	10
Dichlorobromomethane	10
1,1-Dichloroethane	10
1,2-Dichloroethane	10
1,1-Dichloroethylene	10
1,2-Dichloropropane	10
1,3-Dichloropropylene	10
Ethylbenzene	10
Methyl Bromide [Bromomethane]	50
Methyl Chloride [Chloromethane]	50
Methylene Chloride	20
1,1,2,2-Tetrachloroethane	10
Tetrachloroethylene	10
Toluene	10
1,2-trans-Dichloroethylene	10
1,1,1-Trichloroethane	10
1,1,2-Trichloroethane	10
Trichloroethylene	10
Vinyl Chloride	10
ACID COMPOUNDS	MQL (µg/L)
2-Chlorophenol	10
2,4-Dichlorophenol	10
2,4-Dimethylphenol	10
4,6-Dinitro-o-Cresol [2-Methyl-4,6-Dinitrophenol]	50
2,4-Dinitrophenol	50
2-Nitrophenol	20
4-Nitrophenol	50
p-Chloro-m-Cresol [4-Chloro-3-Methylphenol]	10
Pentachlorophenol	50
Phenol	10
2,4,6-Trichlorophenol	10
BASE/NEUTRAL COMPOUNDS	MQL (µg/L)
Acenaphthene	10
Acenaphthylene	10
Anthracene	10
Benzidine	50
Benzo(a) anthracene	10
Benzo(a)pyrene	10
3,4-Benzofluoranthene	10
Benzo(ghi)perylene	20
Benzo(k) fluoranthene	10
Bis (2-chloroethoxy) Methane	10
Bis (2-chloroethyl) Ether Bis (2-chloroisopropyl) Ethor	10
Bis(2-chloroisopropyl) Ether	10

Part II	Page 6
Permit No. Draft LA0003301	AI No. 1409
Bis(2-ethylhexyl) Phthalate	10
4-Bromophenyl Phenyl Ether	10
Butylbenzyl Phthalate	10
2-Chloronapthalene	10
4-Chlorophenyl Phenyl Ether	10
Chrysene	10
Dibenzo(a,h)anthracene	20
1,2-Dichlorobenzene	10
1,3-Dichlorobenzene	10
1,4-Dichlorobenzene	10
3,3'-Dichlorobenzidine	50
Diethyl Phthalate	10
Dimethyl Phthalate	10
Di-n-Butyl Phthalate	10
2,4-Dinitrotoluene	10
2,6-Dinitrotoluene	10
Di-n-octyl Phthalate	10
1,2-Diphenylhydrazine	20
Fluoranthene	10
Fluorene	10
Hexachlorobenzene	10
Hexachlorobutadiene	10
Hexachlorocyclopentadiene	10
Rexachloroethane	20
Indeno(1,2,3-cd)pyrene (2,3-o-Phenylene Pyrene)	20
Isophorone	10
Naphthalene	10
Nitrobenzene	10
n-Nitrosodimethylamine	50
n-Nitrosodi-n-Propylamine n-Nitrosodiphenylamine	20
Phenanthrene	20
Pyrene	10
1,2,4-Trichlorobenzene	10
1/2/	10
PESTICIDES	MQL (µg/L)
Aldrin	0.05
Alpha-BHC	0.05
Beta-BHC	0.05
Gamma-BHC [Lindane]	0.05
Delta-BHC	0.05
Chlordane	0,2
4,4'~DDT	0.1
4,4'-DDE [p,p-DDX]	0.1
4,4'-DDD [p,p-TDE]	0.1
Dieldrin	0.1
Alpha-Endosulfan	0.1
Beta-Endosulfan Endosulfan Sulfate	0.1
Endosultan Sultate Endrin	0.1
Endrin Aldehyde	0.1
Heptachlor	0.1 0.05
Heptachlor Epoxide [BHC-Hexachlorocyclohexane]	0.05
PCB-1242	1.0
PCB-1254	1.0
PCB-1221	1.0
PCB-1232	1.0
PCB-1248	1.0
PCB-1260	1.0

Part II	Page 7
Permit No. Draft LA0003301	AI No. 1409
PCB-1016	1.0
Toxaphene	5.0

The permittee may develop an effluent specific method detection limit (MDL) in accordance with Appendix B to 40 CFR Part 136 (See LAC 33:IX.4901). For any pollutant for which the permittee determines an effluent specific MDL, the permittee shall send to this Office a report containing QA/QC documentation, analytical results, and calculations necessary to demonstrate that the effluent specific MDL was correctly calculated. An effluent specific minimum quantification level (MQL) shall be determined in accordance with the following calculation:

 $MQL = 3.3 \times MDL$

Upon written approval by this Office, the effluent specific MQL may be utilized by the permittee for all future Discharge Monitoring Report (DMR) calculations and reporting requirements.

K. The permittee shall achieve compliance with the effluent limitations and monitoring requirements specified for discharges in accordance with the following schedule: Effective date of the permit with the exception of the outfalls as indicated below.

ACTIVITY	SCHROULE
Compliance with the effluent limits and monitoring requirements established in Part I of the permit [pages 11 (Outfall 201), 13 (Outfall 301), and 15 (Outfall 311)] - Phase I	Beginning the effective date of the permit and lasting until cessation of process wastewater discharges from the Ethylene Dichloride manufacturing operations
Compliance with the effluent limits and monitoring requirements established in Part I of the permit [pages 12 (Outfall 201), 14 (Outfall 301), and 18 (Outfall 311)] - Phase II	Beginning the cessation of process wastewater discharges from the Ethylene Dichloride manufacturing operations and lasting until the expiration date
Compliance with the effluent limits and monitoring requirements established in Part I of the permit (page 40 (Outfall 631)) - Phase I	Beginning the effective date of the permit and lasting until shutdown of Vinyl II Plant (including cessation of discharges from the plant)
Compliance with the effluent limits and monitoring requirements established in Part I of the permit [page 42 (Outfall 631)] - Phase II	Beginning the shutdown of Vinyl II Plant (including cessation of discharges from the plant) and lasting until the expiration date

The permittee shall notify the Office of Environmental Services, the Office of Environmental Compliance-Permit Compliance Unit, and the Capital Regional Office in writing at least 30 days prior to startup of discharges under each phase.

L. FLOW MEASUREMENT "CONTINUOUS" SAMPLE TYPE - ALTERNATIVE PROCEDURE

In the event of a flow monitoring device failure with equipment used for backup purposes, the permittee shall use the daily average flow prior to the upset event to estimate flow. Continuous monitoring must be restored as soon as possible, and in no event more than 72 hours from the time of the flow monitoring device failure. This exception to continuous flow monitoring can be used no more than once per

Page 8 AI No. 1409

month for each applicable outfall. During periods of interruption of instantaneous flow measurement, sample compositors shall collect samples at regular intervals of time.

In the event of a flow monitoring device failure, the permittee shall include the following information in the comments section on the DMR:

- (1) The date and time of the flow monitoring device failure.
- (2) The date and time that the operation of the flow monitoring device is restored.

M. PERMIT REOPENER CLAUSE

In accordance with LAC 33:IX.2903, this permit may be modified, or alternatively, revoked and reissued, to comply with any applicable effluent standard or limitations issued or approved under sections 301(b)(2)(c) and (D); 304(b)(2); and 307(a)(2) of the Clean Water Act, if the effluent standard or limitations so issued or approved:

- 1. Contains different conditions or is otherwise more stringent than any effluent limitation in the permit; or
- 2. Controls any pollutant not limited in the permit; or
- 3. Require reassessment due to change in 303(d) status of waterbody; or
- 4. Incorporates the results of any total maximum daily load allocation which may be approved for the receiving water body.

The Louisiana Department of Environmental Quality (LDEQ) reserves the right to impose more stringent discharge limitations and/or additional restrictions in the future to maintain the water quality integrity and the designated uses of the receiving water bodies based upon additional water quality studies and/or TMDL's The LDEQ also reserves the right to modify or revoke and reissue this permit based upon any changes to established TMDL's for this discharge, or to accommodate for pollutant trading provisions in approved TMDL watersheds as necessary to achieve compliance with water quality standards. Therefore, prior to upgrading or expanding this facility, the permittee should contact the Department to determine the status of the work being done to establish future effluent limitations and additional permit conditions.

N. STORMWATER DISCHARGES

- This section applies to all stormwater discharges from the facility, either through permitted outfalls or through outfalls which are not listed in the permit or as sheet flow. The purpose of the pollution prevention plan is to identify potential sources of pollution that would reasonably be expected to affect the quality of stormwater and identify the practices that will be used to prevent or reduce the pollutants in stormwater discharges.
- 2. Any runoff leaving the developed areas of the facility, other than the permitted outfall(s), exceeding 50 mg/L TOC, 15 mg/L Oil and Grease, or having a pH less than 6.0 or greater than 9.0 standard units shall be a violation of this permit. Any discharge in excess of these limitations, which is attributable to offsite contamination shall not be considered a violation of this permit. A visual inspection of the facility shall be conducted and a report made annually as described in Paragraph 4 below.

Page 9 AI No. 1409

- For first time permit issuance, the permittee shall prepare, implement, and maintain a Storm Water Pollution Prevention Plan (SWP3) within six (6) months of the effective date of the final permit. For renewal permit issuance, the permittee shall review and update, if necessary, a Storm Water Pollution Prevention Plan (SWP3) within six (6) months of the effective date of the final permit. The terms and conditions of the SWP3 shall be an enforceable Part of the permit. If the permittee maintains other plans that contain duplicative information, those plans could be incorporated by reference into the SWP3. Examples of these type plans include, but are not limited to: Spill Prevention Control and Countermeasure Plan (SPCC), Best Management Plan (BMP), Response EPA document 832-R-92-006 (Storm Water Management for Industrial Activities) may be used as a guidance and may be obtained by writing to the Water Resource Center (RC-4100T), U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue NW, Washington D.C. 20460 or by calling (202) 566-1729 or via the Wetlands Helpline (800) 832-7828.
- The following conditions are applicable to all facilities and shall be included in the SWP3 for the facility.
 - a. The permittee shall conduct an annual inspection of the facility site to identify areas contributing to the storm water discharge from developed areas of the facility and evaluate whether measures to reduce pollutant loadings identified in the SWP3 are adequate and have been properly implemented in accordance with the terms of the permit or whether additional control measures are needed.
 - b. The permittee shall develop a site map which includes all areas where stormwater may contact potential pollutants or substances which can cause pollution. Any location where reportable quantities leaks or spills have previously occurred are to be documented in the SWP3. The SWP3 shall contain a description of the potential pollutant sources, including, the type and quantity of material present and what action has been taken to assure stormwater precipitation will not directly contact the substances and result in contaminated runoff.
 - c. Where experience indicates a reasonable potential for equipment failure (e.g. a tank overflow or leakage), natural condition of (e.g. precipitation), or other circumstances which result in significant amounts of pollutants reaching surface waters, the SWP3 should include a prediction of the direction, rate of flow and total quantity of pollutants which could be discharged from the facility as a result of each condition or circumstance.
 - d. The permittee shall maintain for a period of three years a record summarizing the results of the inspection and a certification that the facility is in compliance with the SWP3, and identifying any incidents of noncompliance. The summary report should contain, at a minimum, the date and time of inspection, name of inspector(s), conditions found, and changes to be made to the SWP3.
 - e. The summary report and the following certification shall be signed in accordance with LAC 33:IX.2503. The summary report is to be attached to the SWP3 and provided to the Department upon request.
 - "I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel

Page 10 AI No. 1409

properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.*

Signatory requirements for the certification may be found in Part III, Section D.10 of this permit.

- f. The permittee shall make available to the Department, upon request, a copy of the SWP3 and any supporting documentation.
- 5. The following shall be included in the SWP3, if applicable.
 - a. The permittee shall utilize all reasonable methods to minimize any adverse impact on the drainage system including but not limited to:
 - i. maintaining adequate roads and driveway surfaces;
 - removing debris and accumulated solids from the drainage system; and
 - iii. cleaning up immediately any spill by sweeping, absorbent pads, or other appropriate methods.
 - b. All spilled product and other spilled wastes shall be immediately cleaned up and disposed of according to all applicable regulations, Spill Prevention and Control (SPC) plans or Spill Prevention Control and Countermeasures (SPCC) plans. Use of detergents, emulsifiers, or dispersants to clean up spilled product is prohibited except where necessary to comply with State or Federal safety regulations (i.e., requirement for non-slippery work surface) except where the cleanup practice does not result in a discharge and does not leave residues exposed to future storm events. In all such cases, initial cleanup shall be done by physical removal and chemical usage shall be minimized.
 - c. All equipment, parts, dumpsters, trash bins, petroleum products, chemical solvents, detergents, or other materials exposed to stormwater shall be maintained in a manner which prevents contamination of stormwater by pollutants.
 - d. All waste fuel, lubricants, coolants, solvents, or other fluids used in the repair or maintenance of vehicles or equipment shall be recycled or contained for proper disposal. Spills of these materials are to be cleaned up by dry means whenever possible.
 - e. If applicable, all storage tank installations (with a capacity greater than 660 gallons for an individual container, or 1,320 gallons for two or more containers in aggregate within a common storage area) shall be constructed so that a secondary means of containment is provided for the entire contents of the largest tank plus sufficient freeboard to allow for precipitation. Diked areas should be sufficiently impervious to contain spills.
 - f. All diked areas surrounding storage tanks or stormwater collection basins shall be free of residual oil or other contaminants so as to prevent the accidental discharge of these materials in the event of flooding, dike failure, or improper draining of the diked area. All

Page 11 AI No. 1409

drains from diked areas shall be equipped with valves which shall be kept in the closed condition except during periods of supervised discharge.

- g. All check valves, tanks, drains, or other potential sources of pollutant releases shall be inspected and maintained on a regular basis to assure their proper operation and to prevent the discharge of pollutants.
- h. The permittee shall assure compliance with all applicable regulations promulgated under the Louisiana Solid Waste and Resource Recovery Law and the Hazardous Waste Management Law (L.R.S. 30:2151, etc.). Management practices required under above regulations shall be referenced in the SWP3.
- i. The permittee shall amend the SWP3 whenever there is a change in the facility or change in the operation of the facility which materially increases the potential for the ancillary activities to result in a discharge of significant amounts of pollutants.
- j. If the SWP3 proves to be ineffective in achieving the general objectives of preventing the release of significant amounts of pollutants to water of the state, then the specific objectives and requirements of the SWP3 shall be subject to modification to incorporate revised SWP3 requirements.
- 6. Facility Specific SWP3 Conditions:

None

O. DISCHARGE MONITORING REPORTS

Monitoring results must be reported on a Discharge Monitoring Report (DMR) form (EPA No. 3320-1 or an approved substitute). All monitoring reports must be retained for a period of at least three (3) years from the date of the sample measurement. The permittee shall make available to this Department, upon request, copies of all monitoring data required by this permit.

If there is no discharge during the reporting period, place an "X" in the $\underline{\text{NO}}$ DISCHARGE box located in the upper right corner of the Discharge Monitoring Report for that outfall.

Monitoring results for each reporting period shall be summarized on a Discharge Monitoring Report (DMR) Form (one DMR form per monitoring period per outfall) and submitted to the Office of Environmental Compliance either hand delivered, postmarked, or electronically submitted in accordance with LAC 33:I.2101.A and B no later than the 15th day of the month following each reporting period.

 For parameter(s) with monitoring frequencies of 1/month or more frequent (i.e. continuous, 1/batch, 1/discharge event, 1/day, 3/week, 2/week, 1/week, 2/month, etc.), DMRs shall be submitted in accordance with the following schedule:

Submit DMR postmarked by the 15th day of the following month.

2. For parameter(s) that require a monitoring frequency of 1/2 months, DMRs shall be submitted in accordance with the following schedule:

Page 12 AI No. 1409

Monitoring Period

DMR Postmark Date

January 1 - February 28(29)

March 15th

March 1 - April 30

May 15th

May 1 - June 30

July 15th

July 1 - August 31

September 1 - October 31

November 1 - December 31

January 15th

3. For parameter(s) that require a monitoring frequency of quarterly, DMRs shall be submitted in accordance with the following schedule:

Monitoring Period	DMR Postmark Date
January, February, March April, May, June July, August, September October, November, December	April 15th July 15th October 15th January 15th

4. For parameter(s) that require a semiannual monitoring frequency, DMRs shall be submitted in accordance with the following schedule:

Monitoring Period	DMR Postmark Date
January - June	July 15th
July - December	January 15th

5. For parameter(s) that require an annual monitoring frequency, DMRs shall be submitted in accordance with the following schedule:

Monitoring Period	DMR Postmark Date
January-Becomber	Tamuawa 15th

January-December January 15th

If not submitting electronically, duplicate copies of DMRs (one set of originals and one set of copies) signed and certified as required by LAC 33:IX.2503, and all other reports (one set of originals) required by this permit shall be submitted to the Permit Compliance Unit at the following address:

Department of Environmental Quality
Office of Environmental Compliance
Permit Compliance Unit
Post Office Box 4312
Baton Rouge, Louisiana 70821-4312

P. 48 HR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

It is unlawful and a violation of this permit for a permittee or the designated agent, to manipulate test samples in any manner, to delay sample shipment, or to terminate or to cause to terminate a toxicity test. Once initiated, all toxicity tests must be completed unless specific authority has been granted by the Louisiana Department of Environmental Quality.

1. SCOPE AND METHODOLOGY

a. The permittee shall test the effluent for toxicity in accordance with the provisions in this section.

_ .

، مث د. Part II
Permit No. Draft LA0003301

Page 12 AI No. 1409

Monitoring Period

DMR Postmark Date

January 1 - February 28(29)
March 1 - April 30
May 1 - June 30
July 1 - August 31
September 1 - October 31
November 1 - December 31

March 15th
May 15th
July 15th
September 15th
November 15th
January 15th

3. For parameter(s) that require a monitoring frequency of quarterly, DMRs shall be submitted in accordance with the following schedule:

Monitoring Period

DMR Postmark Date

January, February, March
April, May, June
July, August, September
October, November, December
January 15th
January 15th

4. For parameter(s) that require a semiannual monitoring frequency, DMRs shall be submitted in accordance with the following schedule:

Monitoring Period

DMR Postmark Date

January - June July - December

July 15th January 15th

5. For parameter(s) that require an annual monitoring frequency, DMRs shall be submitted in accordance with the following schedule:

Monitoring Period

DMR Postmark Date

January-December

January 15th

If not submitting electronically, duplicate copies of DMRs (one set of originals and one set of copies) signed and certified as required by LAC 33:IX.2503, and all other reports (one set of originals) required by this permit shall be submitted to the Permit Compliance Unit at the following address:

Department of Environmental Quality
Office of Environmental Compliance
Permit Compliance Unit
Post Office Box 4312
Baton Rouge, Louisiana 70821-4312

P. 48 HR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

It is unlawful and a violation of this permit for a permittee or the designated agent, to manipulate test samples in any manner, to delay sample shipment, or to terminate or to cause to terminate a toxicity test. Once initiated, all toxicity tests must be completed unless specific authority has been granted by the Louisiana Department of Environmental Quality.

1. SCOPE AND METHODOLOGY

a. The permittee shall test the effluent for toxicity in accordance with the provisions in this section.

Page 13 AI No. 1409

APPLICABLE TO OUTFALL(S):

001

REPORTED ON DMR AS FINAL OUTFALL:

TX1

CRITICAL DILUTION:

19%

EFFLUENT DILUTION SERIES:

8%, 11%, 14%, 19%, and

26₺

SAMPLE TYPE:

24-Hour Composite

TEST SPECIES/METHODS:

40 CFR Part 136

<u>Daphnia</u> <u>pulex</u> acute static renewal 48-hour definitive toxicity test using EPA-821-R-02-012, or the latest update thereof. A minimum of five (5) replicates with ten (10) organisms per replicate must be used in the control and in each effluent dilution of this test.

<u>Pimephales promelas</u> (Fathead minnow) acute static renewal 48-hour definitive toxicity test using EPA-821-R-02-012, or the latest update thereof. A minimum of five (5) replicates with ten (10) organisms per replicate must be used in the control and in each effluent dilution of this test.

- b. The NOEC (No Observed Effect Concentration) is defined as the greatest effluent dilution at and below which lethality that is statistically different from the control (0% effluent) at the 95% confidence level does not occur.
- c. This permit may be reopened to require whole effluent toxicity limits, chemical specific effluent limits, additional testing, and/or other appropriate actions to address toxicity.
- d. Test failure is defined as a demonstration of statistically significant lethal effects to a test species at or below the effluent critical dilution.

2. PERSISTENT LETHALITY

The requirements of this subsection apply only when a toxicity test demonstrates significant lethal effects at or below the critical dilution. Significant lethal effects are herein defined as a statistically significant difference at the 95% confidence level between the survival of the appropriate test organism in a specified effluent dilution and the control (0% effluent).

If any valid test demonstrates significant lethal effects to a test species at or below the critical dilution, the frequency of testing for that species is automatically increased to once per quarter for the term of the permit.

The permittee shall conduct a total of three (3) additional tests for any species that demonstrates statistically significant lethal toxic effects at the critical dilution or lower effluent dilutions. The additional tests shall be conducted monthly during the next three consecutive months in which a discharge occurs to determine if toxicity is persistent or occurs on a periodic basis. The purpose of this testing is to determine whether toxicity is present at a

Page 14 AI No. 1409

level and frequency that will provide toxic sample results to use in performing a Toxicity Reduction Evaluation (TRE). If no additional test failures occur during the retest monitoring period, the testing frequency will be once per quarter for the term of the permit or until another test failure occurs. The permittee may substitute one of the additional tests in lieu of one routine toxicity test. A full report shall be prepared for each test required by this section in accordance with procedures outlined in item 4 of this section and submitted with the period discharge monitoring report (DMR) to the permitting authority for review.

- b. If any of the valid additional tests demonstrates significant lethal effects at or below the critical dilution, the permittee shall initiate Toxicity Reduction Evaluation (TRE) requirements as specified in item 6 of this section. The permittee shall notify the Department of Environmental Quality, Office of Environmental Compliance Permit Compliance Unit in writing within 5 days of the failure of any retest, and the TRE initiation date will be the test completion date of the first failed retest. A TRE may also be required due to a demonstration of intermittent lethal effects at or below the critical dilution, or for failure to perform the required retests.
- The provisions of item 2.a are suspended upon submittal of the TRE Action Plan.

3. REQUIRED TOXICITY TESTING CONDITIONS

a. Test Acceptance

The permittee shall repeat a test, including the control and all effluent dilutions, if the procedures and quality assurance requirements defined in the test methods or in this permit are not satisfied, including the following additional criteria:

- i. Each toxicity test control (0% effluent) must have a survival equal to or greater than 90%.
- ii. The percent coefficient of variation between replicates shall be 40% or less in the control (0% effluent) for the <u>Daphnia pulex</u> survival test and Fathead minnow survival test.
- iii. The percent coefficient of variation between replicates shall be 40% or less in the critical dilution, unless significant lethal effects are exhibited for the <u>Daphnia pulex</u> survival test and Fathead minnow survival test.

Test failure may not be construed or reported as invalid due to a coefficient of variation value of greater than 40%. A repeat test shall be conducted within the required reporting period of any test determined to be invalid.

b. Statistical Interpretation

For the <u>Daphnia pulex</u> survival test and the Fathead minnow survival test, the statistical analyses used to determine if there is a statistically significant difference between the control and the critical dilution shall be in accordance with the methods for determining the No Observed Effect Concentration (NOEC) as described in

Page 15 AI No. 1409

EPA-821-R-02-012, or the most recent update thereof.

If the conditions of Test Acceptability are met in Item 3.a above and the percent survival of the test organism is equal to or greater than 90% in the critical dilution concentration and all lower dilution concentrations, the test shall be considered to be a passing test, and the permittee shall report an NOEC of not less than the critical dilution for the DMR reporting requirements found in Item 4 below.

c. Dilution Water

- i. Dilution water used in the toxicity tests will be receiving water collected as close to the point of discharge as possible but unaffected by the discharge. The permittee shall substitute synthetic dilution water of similar pH, hardness, and alkalinity to the closest downstream perennial water for;
 - A. toxicity tests conducted on effluent discharges to receiving water classified as intermittent streams; and
 - B. toxicity tests conducted on effluent discharges where no receiving water is available due to zero flow conditions.
- ii. If the receiving water is unsatisfactory as a result of instream toxicity (fails to fulfill the test acceptance criteria of item 3.a), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - A. a synthetic dilution water control which fulfills the test acceptance requirements of item 3.a was run concurrently with the receiving water control;
 - B. the test indicating receiving water toxicity has been carried out to completion (i.e., 48 hours);
 - C. the permittee includes all test results indicating receiving water toxicity with the full report and information required by item 4 below; and
 - D. the synthetic dilution water shall have a pH, hardness, and alkalinity similar to that of the receiving water or closest downstream perennial water not adversely affected by the discharge, provided the magnitude of these parameters will not cause toxicity in the synthetic dilution water.

d. Samples and Composites

i. The permittee shall collect two flow-weighted 24-hour composite samples from the outfall(s) listed at item 1.a above. A 24-hour composite sample consists of a minimum of 4 effluent portions collected at equal time intervals representative of a 24-hour operating day and combined proportional to flow or a sample continuously collected proportional to flow over a 24-hour operating day.

Page 16 AI No. 1409

- ii. The permittee shall collect a second 24-hour composite sample for use during the 24-hour renewal of each dilution concentration for both tests. The permittee must collect the 24-hour composite samples so that the maximum holding time for any effluent sample shall not exceed 36 hours. The permittee must have initiated the toxicity test within 36 hours after the collection of the last portion of the first 24-hour composite sample. Samples shall be chilled to 0-6 degrees Centigrade during collection, shipping and/or storage.
- iii. The permittee must collect the 24-hour composite samples such that the effluent samples are representative of any periodic episode of chlorination, biocide usage or other potentially toxic substance discharged on an intermittent basis.
- iv. If the flow from the outfall(s) being tested ceases during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions and the sample holding time are waived during that sampling period. However, the permittee must collect an effluent composite sample volume during the period of discharge that is sufficient to complete the required toxicity tests with daily renewal of effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days. The effluent composite sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report required in item 4 of this section.

4. REPORTING

a. A valid test must be completed and test results must be submitted for each species during each Monitoring Period. The permittee shall prepare a full report of the results of all tests conducted pursuant to this Part in accordance with the Report Preparation Section of EPA-821-R-02-012, for every valid or invalid toxicity test initiated, whether carried to completion or not. The permittee shall retain each full report pursuant to the provisions of Part III.C of this permit. For any test which fails, is considered invalid, or which is terminated early for any reason, the full report must be submitted for agency review. The permittee shall submit the first full report to:

Department of Environmental Quality
Office of Environmental Compliance
P. O. Box 4312
Baton Rouge, Louisiana 70821-4312
Attn: Permit Compliance Unit

b. The permittee shall submit the results of each valid toxicity test on the DMR for that Monitoring Period in accordance with Part III D.4 and the DMR Monitoring Period schedule contained in Part II of this permit. Submit retest information clearly marked as such on the DMR for the Monitoring Period in which the retest occurred. Only results of valid tests are to be reported on the DMR. The permittee shall submit the Table 1 and 2 Summary Sheets with each valid test.

Page 17 AI No. 1409

i. Pimephales promelas (Fathead minnow)

- A. If the No Observed Effect Concentration (NOEC) for survival is less than the critical dilution, enter a "1"; otherwise, enter a "0" for Parameter No. TEM6C.
- B. Report the NOEC value for survival, Parameter No. TOM6C.
- C. Report the highest (critical dilution or control) Coefficient of Variation, Parameter No. TQM6C.

ii. Daphnia pulex

- A. If the NOEC for survival is less than the critical dilution, enter a "1"; otherwise, enter a "0" for Parameter No. TEM3D.
- B. Report the NOEC value for survival, Parameter No. TOM3D.
- C. Report the highest (critical dilution or control) Coefficient of Variation, Parameter No. TQM3D.
- iii. The permittee shall report the following results for all <u>VALID</u> toxicity <u>retests</u> on the DMR for that Monitoring Period.
 - A. Retest #1 (STORET 22415): If the <u>first</u> monthly retest following failure of a routine test for either test species results in an NOEC for survival less than the critical dilution, report a "1"; otherwise, report a "0".
 - B. Retest #2 (STORET 22416): If the <u>second</u> monthly retest following failure of a routine test for either test species results in an NOEC for survival less than the critical dilution, report a "1"; otherwise, report a "0".
 - C. Retest #3 (STORET 51443): If the third monthly retest following failure of a routine test for either test species results in an NOEC for survival less than the critical dilution, report a "1"; otherwise, report a "0".
- If, for any reason, a retest cannot be performed during the Monitoring Period in which the triggering routine test failure is experienced, the permittee shall report it on the following Monitoring Period's DMR, and the comments section of the DMRs shall be annotated to that effect. If retesting is not required during a given Monitoring Period, the permittee shall leave these DMR fields blank.

The permittee shall submit the toxicity testing information contained in Tables 1 and 2 of this permit with the DMR subsequent to each and every toxicity test Monitoring Period. The DMR and the summary table should be sent to the address indicated in 4.a.

5. MONITORING PREQUENCY REDUCTION

a. Upon successfully passing the first four consecutive quarters of WET testing after permit issuance/reissuance and in the absence of subsequent lethal toxicity for one or both test species at or below

Page 18 AI No. 1409

the critical dilution, the permittee may apply for a testing frequency reduction. If granted, the monitoring frequency for that test species may be reduced to not less than once per year for the less sensitive species (usually the Fathead minnow) and not less than twice per year for the more sensitive test species (usually the Daphnia pulex).

- b. CERTIFICATION The permittee must certify in writing that no test failures have occurred and that all tests meet all test acceptability criteria in item 3.a above. In addition, the permittee must provide a list with each test performed including test initiation date, species, NOECs for lethal effects and the maximum coefficient of variation for the controls. Upon review and acceptance of the information, the agency will issue a letter of confirmation of the monitoring frequency reduction. A copy of the letter will be forwarded to the agency's Permit Compliance Unit to update the permit reporting requirements.
- c. This monitoring frequency reduction applies only until the expiration date of this permit, at which time the Monitoring Frequency/Monitoring Period for both test species reverts to once per quarter until the permit is re-issued.
- d. SURVIVAL FAILURES If any test fails the survival endpoint at any time during the term of this permit, three monthly retests are required and the monitoring frequency for the affected species shall be increased to once per quarter until the permit is re-issued. Monthly retesting is not required if the permittee is performing a TRE.

6. TOXICITY REDUCTION EVALUATION (TRE)

- Within ninety (90) days of confirming lethality in any retest, the a. permittee shall submit a Toxicity Reduction Evaluation (TRE) Action Plan and Schedule for conducting a TRE. The TRE Action Plan shall specify the approach and methodology to be used in performing the TRE. A Toxicity Reduction Evaluation is an investigation intended to determine those actions necessary to achieve compliance with water quality-based effluent requirements and/or chemical-specific limits by reducing an effluent's toxicity to an acceptable level. A TRE is defined as a step-wise process which combines toxicity testing and analyses of the physical and chemical characteristics of a toxic effluent to identify the constituents causing effluent toxicity and/or treatment methods which will reduce the effluent toxicity. The TRB Action Plan shall lead to the successful elimination of effluent toxicity at the critical dilution and include the following:
 - Specific Activities. The plan shall detail the specific approach the permittee intends to utilize in conducting the TRE. The approach may include toxicity characterizations, identifications and confirmation activities, source evaluation, treatability studies, or alternative approaches. When the permittee conducts Toxicity Characterization Procedures the permittee shall perform multiple characterizations and follow the procedures specified in the documents "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA-600/6-91/003) and "Toxicity Identification Evaluation:

Page 19 AI No. 1409

Characterization of Chronically Toxic Effluents, Phase I* (BPA-600/6-91/005), or alternate procedures. When the permittee conducts Toxicity Identification Evaluations and Confirmations, the permittee shall perform multiple identifications and follow the methods specified in the documents "Methods for Aquatic Toxicity Identification Bvaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Bvaluations, Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081), as appropriate;

The documents referenced above may be obtained through the National Technical Information Service (NTIS) by phone at 1-800-553-6847, or by writing:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

ii. Sampling Plan (e.g., locations, methods, holding times, chain of custody, preservation, etc.). The effluent sample volume collected for all tests shall be adequate to perform the toxicity test, toxicity characterization, identification and confirmation procedures, and conduct chemical specific analyses when a probable toxicant has been identified;

Where the permittee has identified or suspects specific pollutant(s) and/or source(s) of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical specific analyses for the identified and/or suspected pollutant(s) and/or source(s) of effluent toxicity. Where lethality was demonstrated within 24 hours of test initiation, each 24-hour composite sample shall be analyzed independently. Otherwise the permittee may substitute a composite sample, comprised of equal portions of the individual 24-hour composite samples, for the chemical specific analysis;

- The permittee shall initiate the TRE Action Plan within thirty (30) days of plan and schedule submittal. The permittee shall assume all risks for failure to achieve the required toxicity reduction.
- c. The permittee shall submit a quarterly TRE Activities Report, with the Discharge Monitoring Report in the months of January, April, July, and October, containing information on toxicity reduction evaluation activities including:
 - any data and/or substantiating documentation which identify the pollutant(s) and/or source(s) of effluent toxicity;

Page 20 AI No. 1409

- ii. any studies/evaluations and results on the treatability of the facility's effluent toxicity; and
- iii. any data which identify effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to achieve compliance with permit biomonitoring requirements and/or chemical-specific limits.

The TRE Activities Report shall be submitted to the following addresses:

Department of Environmental Quality
Office of Environmental Compliance
P.O. Box 4312
Baton Rouge, Louisiana 70821-4312
Attn: Permit Compliance Unit

U.S. Environmental Protection Agency, Region 6
Water Enforcement Branch
1445 Ross Avenue
Dallas, Texas 75202

d. The permittee shall submit a Final Report on Toxicity Reduction Evaluation Activities no later than twenty-eight (28) months from confirming lethality in the retests, which provides information pertaining to the specific control mechanism selected that will, when implemented, result in the permittee achieving compliance with permit biomonitoring requirements and/or chemical-specific limits. The report will also provide a specific corrective action schedule for implementing the selected control mechanism.

A copy of the Final Report on Toxicity Reduction Evaluation Activities shall also be submitted to the above addresses.

e. Quarterly testing during the TRE is a minimum monitoring requirement. LDEQ recommends that permittees required to perform a TRE not rely on quarterly testing alone to ensure success in the TRE, and that additional screening tests be performed to capture toxic samples for identification of toxicants. At the end of the TRE, LDEQ will consider all information submitted and establish appropriate controls to prevent future toxic discharges, including WET and/or chemical-specific limits per state regulations at LAC 33:IX.2707.D.i.e.

Q. 316(b) PHASE II RULE REQUIREMENTS

On July 6, 2004, EPA promulgated 'Phase II' regulations in accordance with section 316(b) of the Clean Water Act (CWA). On January 25, 2007, the Second U.S. Circuit Court of Appeals remanded several provisions of the Phase II rule. On March 20, 2007, EPA issued a memo saying, "the rule should be considered suspended". On July 9, 2007, EPA published a Federal Register notice suspending all parts of the Phase II regulations except 40 CFR 125.90(b) [LAC 33:IX4731.B].

LAC 33:4731.B provides for regulating cooling water intake structures for existing facilities on a case-by-case basis using best professional judgment.

Page 21 AI No. 1409

When EPA re-promulgates the Phase II regulations, the provisions and timelines in the rule will supersede any requirements contained in this permit.

In order to reduce the environmental impact caused by the cooling water intake structure (CWIS), the permittee shall comply with effective regulations promulgated in accordance with section 316(b) of the CWA for cooling water intake structures. The permittee must evaluate the environmental impacts of their CWIS by characterizing the fish/shellfish in the vicinity of the CWIS and assessing impingement mortality and entrainment. Based on the information submitted to DEQ, the permit may be reopened to incorporate limitations and/or requirements for the CWIS.

- Within one year of the effective date of this permit, the permittee must submit a plan to develop the information in item 3. of this section. The plan must be submitted to EPA and LDEQ for review and approval and must include an evaluation of existing data and/or collection of additional data to support the determination of 'baseline conditions' and current operational conditions.
- The permittee must submit the following information to DEQ within four (4) years from the effective date of this permit.
 - a. Source water physical data. These include:
 - (1) A narrative description and scaled drawings showing the physical configuration of the source water body used by your facility, including areal dimensions, depths, salinity, temperature regimes, and other documentation that supports your assessment of the water body;
 - (2) Identification and characterization of the source water body's hydrological and geomorphological features, as well as the methods used to conduct any physical studies to determine your intake's area of influence within the water body and the results of such studies; and
 - (3) Location maps.
 - b. Cooling water intake structure data. These include:
 - (1) A narrative description of the configuration of your CWIS and where it is located in the water body and in the water column;
 - (2) Latitude and longitude in degrees, minutes, and seconds of your CWIS;
 - (3) A narrative description of the operation of your CWIS, including design intake flows, daily hours of operation, number of days of the year in operation and seasonal changes, if applicable;
 - (4) A flow distribution and water balance diagram that includes all sources of water to the facility, recirculating flows, and discharges; and
 - (5) Engineering drawings of the CWIS.

Page 22 AI No. 1409

- c. Cooling water system data. The permittee must provide following information for their CWIS.
 - (1) A narrative description of the operation of the cooling water system, its relationship to CWIS, the proportion of the design intake flow that is used in the system, the number of days of the year the cooling water system is in operation and seasonal changes in the operation of the system, if applicable; and
 - (2) Design and engineering calculations prepared by a qualified professional and supporting data to support the description required by 3.c.(1) of this section.
- d. Source water biological characterization data. This information is required to characterize the biological community in the vicinity of the CWIS and to characterize the environmental impacts of the CWIS. This supporting information must include existing data (if they are available). However, you may supplement the data using newly conducted field studies if you choose to do so. The information you submit must include:
 - A list of species for all life stages of fish and shellfish in the vicinity of your CWIS and their relative abundance (population) in the vicinity of the CWIS;
 - (2) Identification and evaluation of periods of reproduction, larval recruitment, and peak abundance for species in item 3.d.(1) of this section;
 - (3) Data representative of the seasonal and daily activities (e.g., feeding and water column migration) of species in item 3.d.(1) of this section; and
 - (4) Identification of all threatened, endangered, and other protected species that might be susceptible to impingement and entrainment at your CWIS.
- e. Impingement mortality/entrainment characterization assessment. The permittee must provide information to support the determination of the baseline condition and the current impingement mortality and entrainment of all life stages of fish and shellfish referred to in item 3.d. of this section. The information may include historical data that are representative of the current operations of your facility and biological conditions at your site.
- f. If historical data is used, the permittee must provide documentation that the historical data is representative of current operational conditions.
- g. Assessment of the cooling water system. This includes:
 - (1) A discussion or description of how structural or operational actions that are currently in place reduce adverse environmental impacts caused by the cooling water intake.

Page 23 AI No. 1409

- (2) A discussion of additional structural or operational actions, if any, that have been reviewed or evaluated as possible measures to further reduce environmental impacts caused by the cooling water intake.
- A sampling plan is required if actual field studies in the source water body are used to collect biological characteristics data. The sampling plan must document all methods and quality assurance procedures for sampling, and data analysis. The sampling and data analysis methods you propose must be appropriate for a quantitative survey and based on consideration of methods used in other studies performed in the source water body. The sampling plan must include a description of the study area (including the area of influence of the cooling water intake structure and at least 100 meters beyond); taxonomic identification of the sampled or evaluated biological assemblages (including all life stages of fish and shellfish); and sampling and data analysis methods.
- 5. Source water biological characterization data are not required if the permittee can demonstrate that the facility uses only a closed-cycle recirculating system for withdrawal of all cooling water.
- 6. The following special definitions apply to this subpart:
 - a. Baseline conditions means the impingement mortality and entrainment that would occur at your site assuming that (1) the cooling water system has been designed as a once-through system, (2) the opening of the CWIS in located at, and the face of the standard 3/8-inch mesh traveling screen is oriented parallel to, the shoreline near the surface of the source water body.
 - b. Closed-cycle recirculating system means a system designed, using minimized makeup and blow down flows, to withdraw water from a natural or other water source to support contact and/or non-contact cooling uses within a facility. The water is usually sent to a cooling canal or channel, lake, pond, or tower to allow waste heat to be dissipated to the atmosphere and then is returned to the system. (Some facilities divert the waste heat to other process operations.) New source water (make-up water) is added to the system to replenish losses that have occurred due to blow down, drift, and evaporation
 - c. Cooling water means water used for contact or non-contact cooling, including water used for equipment cooling, evaporative cooling tower makeup, and dilution of effluent heat content. The intended use of the cooling water is to absorb waste heat rejected from the process or processes used, or from auxiliary operations on the facility's premises.
 - d. Cooling water intake structure means the total physical structure and any associated constructed waterways used to withdraw cooling water from waters of the U.S. The cooling water intake structure extends from the point at which water is withdrawn from the surface water source up to, and including, the intake pumps.

Page 24 AI No. 1409

- e. Intake flow means the value of the total volume of water withdrawn from a source water body over a specific time period.
- f. Intake velocity means the value of the average speed at which intake water passes through the open area of the intake screen (or other device) against which organisms might be impinged or through which they might be entrained.
- g. Entrainment means the incorporation of all life stages of fish and shellfish with intake water flow entering and passing through a cooling water intake structure and into a cooling water system.
- h. Bydraulic zone of influence means that portion of the source water body hydraulically affected by the cooling water intake structure withdrawal of water.
- i. Impingement means the entrapment of all life stages of fish and shellfish on the outer part of an intake structure or against a screening device during periods of intake water withdrawal.
- j. Maximize means to increase to the greatest amount, extent, or degree reasonably possible.
- k. Minimize means to reduce to the smallest amount, extent, or degree reasonably possible.
- Source water means the water body (waters of the state) from which the cooling water is withdrawn.

R. DIOXIN INFLUENT/EFFLUENT MONITORING REQUIREMENT

The permittee shall analyze daily composite samples of the facility's influent, receiving water from the Mississippi River at mile marker 210, and its effluent at final Outfall 001 once per six months for concentrations of 2,3,7,8-isomers of chlorinated dibenzo-p-dioxins and chlorinated dibenzofurans. Results shall be reported as designated in 40 CFR 136, App, Method 1613 and submitted to Water Quality Divisions of LDEQ with the July and January Discharge Monitoring Reports.

TABLE 1 SUMMARY SHEET Daphnia pulex ACUTE SURVIVAL TEST RESULTS

FACILITY SITE	i: Lo	misiana Ono	rations				
TEDES PERMIT	NUMBE	R: LA00	03301 AII	409			
OUTFALL IDEN OUTFALL SAM RIOMONITORT	VTIFICAT	FION: 00)]	TX) (*) T		* PY XX - PXXXX - X	
BIOMONITORI	iple is p NG Labo	ROM)RATORY:		INGLE	ampunggan Walabay Indodusin ayang ara, ayan aray a	_MULTIPLI	E DISCHARGE
BIOMONITORE DILUTION WA'	TER USE	D:	RECI	EIVING WA	TER	The state of the s	LAB WATER
CRITICAL DILL	JHON	19	% D	ATE TEST	INITIATED_	and the state of t	
1. LOW-FLOV	V LETHA	AJTY:					
Is the mean s or critical dib	urvival at ution?						or the low flow
CATALATA CATA	T	1/		ES RESULT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		17.
TIME OF READING	REP	0%	8%	11%	14%	19%	26%
24-HOUR							
48-HOUR					·		
	==-						
			٠	·			
MEAN							
2. Are the test rest If X no (test				lity?		er common and	YesNo
. Is this a retest o Is this a retest o						/m: m: m: m;	YesNo YesNo
. Enter percent e pulex:	ffluent co	rresponding	to each NO	DEC (No Ob	served Effect	Concentrat	ion) for <u>Daphnia</u>
		NO	EC	% EFFLU	ENT		
		LC	5048	% EFFLU	ENT		

TABLE 2 SUMMARY SHEET Pimephales promelas ("fathead minnow") ACUTE SURVIVAL TEST

PERMITTEE:							
FACILITY SITE	:: <u>L</u>	ouisiana Or	perations				
LPDES PERMI	E NUMBE	R: <u>LAO</u>	003301, AL	1409			
OUTFALL IDE	NTHICA.	HON: (<u>/// </u>	VINIZAL IZ	· · · · · · · · · · · · · · · · · · ·	MIN AM	TO PARCECIAN AND CO
OUTFALL SAN	MULLADI MULLADI	MONE		MOLE	P4 - P1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	_MULTIPI	ÆDISCHARG.
BIOMONITORI DILUTION WA	TO LAD!	ЛОН ОІСТ	DEC	CIMBIC WA	7720		LAD WATER
CRITICAL DIL	TEN OSE	10		LI V EINCH WYZ 1 TEQUT I	DUTLATED	***************************************	LAD WATER
CMIROLUL	OTION			MIL LEGI I	HALLIAL 1217"	***************************************	***************************************
1. LOW-FLOV	V LETHA	ALITY:					
Is the mean flow or critic			days signific	antly less (p	=0.05) than th		urvival at the lo_YesNo
		DILUTI	ON SERIE	S RESULTS	- Pimephale	S	
TIME OF READING	REP	0%	8%	11%	14%	19%	26%
24-HOUR							
			-				
			<u> </u>				
48-HOUR	ĺ		1	1			
			-				
			<u> </u>	<u> </u>			

MEAN			† .	†			
THE/O'S		<u> </u>	<u> </u>	1			
 Are the test re 	esults to be	e considere	d valid?				YesN
If X no (tes				idity?			Shareholder and the state of th
anametronom.	, ,			•			
4. Is this a retest of a previous invalid test? Is this a retest of a previous test failure?					Yes N		
15 (115 117)	or a provi	500 CM 101					AND THE PARTY OF T
 Enter percent <u>Pimephales</u>: 	effluent ,	correspon	ding to ca	ch NOEC (No Observe	d Effect C	Concentration)
	a.	NOEC	9/0	effluent			
	ъ.	LC ₅₀ 48	% effluen	t			

Page 1 of 18

PART III STANDARD CONDITIONS FOR LPDES PERMITS

SECTION A. GENERAL CONDITIONS

1. Introduction

In accordance with the provisions of LAC 33:IX.2701, et seq., this permit incorporates either expressly or by reference ALL conditions and requirements applicable to Louisiana Pollutant Discharge Elimination System Permits (LPDES) set forth in the Louisiana Environmental Quality Act (LEQA), as amended, as well as ALL applicable regulations.

2. Duty to Comply

The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Clean Water Act (CWA) and the Louisiana Environmental Quality Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.

3. Penalties for Violation of Permit Conditions

- a. LA. R. S. 30:2025 provides for civil penalties for violations of these regulations and the Louisiana Environmental Quality Act. LA. R. S. 30:2076.2 provides for criminal penalties for violation of any provisions of the LPDES or any order or any permit condition or limitation issued under or implementing any provisions of the LPDES program. (See Section E. Penalties for Violation of Permit Conditions for additional details).
- Any person may be assessed an administrative penalty by the State Administrative Authority under LA.
 R. S. 30:2025 for violating a permit condition or limitation implementing any of the requirements of the LPDES program in a permit issued under the regulations or the Louisiana Environmental Quality Act.

4. Toxic Pollutants

- a. Other effluent limitations and standards under Sections 301, 302, 303, 307, 318, and 405 of the Clean Water Act. If any applicable toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under Section 307(a) of the Clean Water Act for a toxic pollutant and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, the state administrative authority shall institute proceedings under these regulations to modify or revoke and reissue the permit to conform to the toxic effluent standard or prohibition.
- b. The permittee shall comply with effluent standards or prohibitions established under Section 307(a) of the Clean Water Act for toxic pollutants and with standards for sewage sludge use or disposal established under Section 405(d) of the Clean Water Act within the time provided in the regulations that establish these standards or prohibitions, or standards for sewage sludge use or disposal, even if the permit has not yet been modified to incorporate the requirement.

5. Duty to Reapply

a. Individual Permits. If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a new permit. The new application shall be submitted at least 180 days before the expiration date of the existing permit, unless permission for a later date has been granted by the state administrative authority. (The state administrative authority shall not grant permission for applications to be submitted later than the expiration date of the existing permit.) Continuation of expiring permits shall be governed by regulations promulgated at LAC 33:1X.2321 and any subsequent amendments.

Page 2 of 18

b. General Permits. General permits expire five years after the effective date. The 180-day reapplication period as defined above is not applicable to general permit authorizations. Reissued general permits may provide automatic coverage for permittees authorized under the previous version of the permit, and no new application is required. Requirements for obtaining authorization under the reissued general permit will be outlined in Part I of the new permit. Permittees authorized to discharge under an expiring general permit should follow the requirements for obtaining coverage under the new general permit to maintain discharge authorization.

6. Permit Action

This permit may be modified, revoked and reissued, or terminated for cause in accordance with LAC 33:1X.2903, 2905, 2907, 3105 and 6509. The causes may include, but are not limited to, the following:

- Noncompliance by the permittee with any condition of the permit;
- The permittee's failure in the application or during the permit issuance process to disclose fully all relevant f acts, or the permittee's misrepresentation of any relevant facts at any time;
- A determination that the permitted activity endangers human health or the environment and can only be regulated to acceptable levels by permit modification or termination;
- d. A change in any condition that requires either a temporary or a permanent reduction or elimination of any discharge; or
- e. Failure to pay applicable fees under the provisions of LAC 33: IX. Chapter 13;
- f. Change of ownership or operational control;

The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any permit condition.

7. Property Rights

This permit does not convey any property rights of any sort, or any exclusive privilege.

8. Duty to Provide Information

The permittee shall furnish to the state administrative authority, within a reasonable time, any information which the state administrative authority may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The permittee shall also furnish to the state administrative authority, upon request, copies of records required to be kept by this permit.

9. Criminal and Civil Liability

Except as provided in permit conditions on "Bypassing" and "Upsets", nothing in this permit shall be construed to relieve the permittee from civil or criminal penalties for noncompliance. Any false or materially misleading representation or concealment of information required to be reported by the provisions of the permit, the Act, or applicable regulations, which avoids or effectively defeats the regulatory purpose of the Permit may subject the Permittee to criminal enforcement pursuant to La. R.S. 30:2025.

10. Oil and Hazardous Substance Liability

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties to which the permittee is or may be subject under Section 311 of the Clean Water Act.

11. State Laws

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable State law or regulation under authority preserved by Section 510 of the Clean Water Act.

form_7027_r06 12/17/08

Page 3 of 18

12. Severability

If any provision of these rules and regulations, or the application thereof, is held to be invalid, the remaining provisions of these rules and regulations shall not be affected, so long as they can be given effect without the invalid provision. To this end, the provisions of these rules and regulations are declared to be severable.

13. Dilution

A permittee shall not achieve any effluent concentration by dilution unless specifically authorized in the permit. A permittee shall not increase the use of process water or cooling water or otherwise attempt to dilute a discharge as a partial or complete substitute for adequate treatment to achieve permit limitations or water quality.

14. Facilities Requiring Approval from Other State Agencies

In accordance with La R.S.40.4(A)(6) the plans and specifications of all sanitary sewerage treatment systems, both public and private, must be approved by the Department of Health and Hospitals state health officer or his designee. It is unlawful for any person, firm, or corporation, both municipal and private to operate a sanitary sewage treatment facility without proper authorization from the state health officer.

In accordance with La R.S.40.1149, it is unlawful for any person, firm or corporation, both municipal and private, operating a sewerage system to operate that system unless the competency of the operator is duly certified by the Department of Health and Hospitals state health officer. Furthermore, it is unlawful for any person to perform the duties of an operator without being duly certified.

In accordance with La R.S.48.385, it is unlawful for any industrial wastes, sewage, septic tanks effluent, or any noxious or harmful matter, solid, liquid or gaseous to be discharged into the side or cross ditches or placed upon the rights-of-ways of state highways without the prior written consent of the Department of Transportation and Development chief engineer or his duly authorized representative and of the secretary of the Department of Health and Hospitals.

SECTION B. PROPER OPERATION AND MAINTENANCE

1. Need to Halt or Reduce not a Defense

It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

2. Duty to Mitigate

The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment. The permittee shall also take all reasonable steps to minimize or correct any adverse impact on the environment resulting from noncompliance with the permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

3. Proper Operation and Maintenance

- a. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with the conditions of this permit. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions of the permit.
- b. The permittee shall provide an adequate operating staff which is duly qualified to carry out operation, maintenance and other functions necessary to ensure compliance with the conditions of this permit.

4. Bypass of Treatment Facilities

- a. Bypass. The intentional diversion of waste streams from any portion of a treatment facility.
- b. <u>Bypass not exceeding limitations</u>. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of Section B.4.c. and 4.d of these standard conditions.

c. Notice

- (1) Anticipated bypass. If the permittee knows in advance of the need for a bypass, it shall submit prior notice to the Office of Environmental Services, Water Permits Division, if possible at least ten days before the date of the bypass.
- (2) <u>Unanticipated bypass</u>. The permittee shall submit notice of an unanticipated bypass as required in LAC 33:IX.2701.L.6, (24-hour notice) and Section D.6.e. of these standard conditions.

d. Prohibition of bypass

- (1) Bypass is prohibited, and the state administrative authority may take enforcement action against a permittee for bypass, unless:
 - (a) Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
 - (b) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and,
 - (c) The permittee submitted notices as required by Section 8.4.c of these standard conditions.
- (2) The state administrative authority may approve an anticipated bypass after considering its adverse effects, if the state administrative authority determines that it will meet the three conditions listed in Section B.4.d(1) of these standard conditions.

5. Upset Conditions

- a. <u>Upset</u>. An exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- b. <u>Effect of an upset</u>. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology-based permit effluent limitations if the requirements of Section B.5.c. are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.
- c. <u>Conditions necessary for a demonstration of upset</u>. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - (1) An upset occurred and that the permittee can identify the cause(s) of the upset;
 - (2) The permitted facility was at the time being properly operated; and
 - (3) The permittee submitted notice of the upset as required by LAC 33:1X.2701,L.6.b.ii. and Section D.6.e.(2) of these standard conditions; and

- (4) The permittee complied with any remedial measures required by Section B.2 of these standard conditions.
- d. <u>Burden of proof.</u> In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof.

6. Removed Substances

Solids, sewage sludges, filter backwash, or other pollutants removed in the course of treatment or wastewater control shall be properly disposed of in a manner such as to prevent any pollutant from such materials from entering waters of the state and in accordance with environmental regulations.

7. Percent Removal

For publicity owned treatment works, the 30-day average percent removal for Biochemical Oxygen Demand and Total Suspended Solids shall not be less than 85 percent in accordance with LAC 33:IX.5905.A.3. and B.3.

SECTION C. MONITORING AND RECORDS

1. Inspection and Entry

The permittee shall allow the state administrative authority or an authorized representative (including an authorized contractor acting as a representative of the Administrator), upon the presentation of credentials and other documents as may be required by the law to:

a. Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of this permit.

Enter upon the permittee's premises where a discharge source is or might be located or in which monitoring equipment or records required by a permit are kept for inspection or sampling purposes. Most inspections will be unannounced and should be allowed to begin immediately, but in no case shall begin more than thirty (30) minutes after the time the inspector presents his/her credentials and announces the purpose(s) of the inspection. Delay in excess of thirty (30) minutes shall constitute a violation of this permit. However, additional time can be granted if the inspector or the Administrative Authority determines that the circumstances warrant such action; and

- b. Have access to and copy, at reasonable times, any records that the department or its authorized representative determines are necessary for the enforcement of this permit. For records maintained in either a central or private office that is open only during normal office hours and is closed at the time of inspection, the records shall be made available as soon as the office is open, but in no case later than the close of business the next working day;
- c. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and
- d. Sample or monitor at reasonable times, for the purposes of assuring permit compliance or as otherwise authorized by the Clean Water Act or the Louisiana Environmental Quality Act, any substances or parameters at any location.

e. Sample Collection

- (1) When the inspector announces that samples will be collected, the permittee will be given an additional thirty (30) minutes to prepare containers in order to collect duplicates. If the permittee cannot obtain and prepare sample containers within this time, he is considered to have waived his right to collect duplicate samples and the sampling will proceed immediately. Further delay on the part of the permittee in allowing initiation of the sampling will constitute a violation of this permit.
- (2) At the discretion of the administrative authority, sample collection shall proceed immediately (without the additional 30 minutes described in Section C.1.a. above) and the inspector shall supply the permittee with a duplicate sample.

- f. It shall be the responsibility of the permittee to ensure that a facility representative familiar with provisions of its wastewater discharge permit, including any other conditions or limitations, be available either by phone or in person at the facility during all hours of operation. The absence of such personnel on-site who are familiar with the permit shall not be grounds for delaying the initiation of an inspection except in situations as described in Section C.1.b. of these standard conditions. The permittee shall be responsible for providing witnesses/escorts during inspections. Inspectors shall abide by all company safety rules and shall be equipped with standard safety equipment (hard hat, safety shoes, safety glasses) normally required by industrial facilities.
- g. Upon written request copies of field notes, drawings, etc., taken by department personnel during an inspection shall be provided to the permittee after the final inspection report has been completed.

2. Representative Sampling

Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. All samples shall be taken at the outfall location(s) indicated in the permit. The state administrative authority shall be notified prior to any changes in the outfall location(s). Any changes in the outfall location(s) may be subject to modification, revocation and reissuance in accordance with LAC 33:IX.2903.

3. Retention of Records

Except for records of monitoring information required by this permit related to the permittee's sewage sludge use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR 503), the permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least 3 years from the date of the sample, measurement, report, or application. This period may be extended by request of the state administrative authority at any time.

4. Record Contents

Records of monitoring information shall include:

- a. The date, exact place, and time of sampling or measurements;
- b. The individual(s) who performed the sampling or measurements;
- c. The date(s) analyses were performed;
- d. The time(s) analyses were begun;
- e. The individual(s) who performed the analyses;
- f. The analytical techniques or methods used;
- g. The results of such analyses; and
- h. The results of all quality control procedures.

5. Monitoring Procedures

- a. Monitoring results must be conducted according to test procedures approved under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503, unless other test procedures have been specified in this permit.
- b. The permittee shall calibrate and perform maintenance procedures on all monitoring and analytical instruments at intervals frequent enough to insure accuracy of measurements and shall maintain appropriate records of such activities.
- c. The permittee or designated laboratory shall have an adequate analytical quality assurance/quality control program to produce defensible data of know precision and accuracy. All quality control measures shall be assessed and evaluated on an on-going basis and quality control acceptance criteria shall be used to determine the validity of the data. All method specific quality control as prescribed in the method shall be followed. If quality control requirements are not included in the method, the permittee or designated laboratory shall follow the quality control requirements as prescribed in the Approved Edition (40 CFR Part 136) Standard Methods for the Examination of Water and Wastes, Sections 1020A and 1020B. General sampling protocol shall follow guidelines established in the

"Handbook for Sampling and Sample Preservation of Water and Wastewater, 1982 "U.S. Environmental Protection Agency. This publication is available from the National Technical Information Service (NTIS), Springfield, VA 22161, Phone number (800) 553-6847. Order by NTIS publication number PB-83-124503.

6. Flow Measurements

Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of the volume of monitored discharges. The devices shall be installed, calibrated, and maintained to insure that the accuracy of the measurements are consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than 10% from true discharge rates throughout the range of expected discharge volumes. Guidance in selection, installation, calibration and operation of acceptable flow measurement devices can be obtained from the following references:

- a. "A Guide to Methods and Standards for the Measurement of Water Flow, 1975," U.S. Department of Commerce, National Bureau of Standards. This publication is available from the National Technical Information Service (NTIS), Springfield, VA 22161, Phone number (800) 553-6847. Order by NTIS publication number COM-75-10683.
- b. "Flow Measurement in Open Channels and Closed Conduits, Volumes 1 and 2," U.S. Department of Commerce, National Bureau of Standards. This publication is available from the National Technical Service (NTIS), Springfield, VA, 22161, Phone number (800) 553-6847. Order by NTIS publication number PB-273 535.
- c. "NPDES Compliance Flow Measurement Manual," U.S. Environmental Protection Agency, Office of Water Enforcement. This publication is available from the National Technical Information Service (NTIS), Springfield, VA 22161, Phone number (800) 553-6847. Order by NTIS publication number PB-82-131178.

7. Prohibition for Tampering: Penalties

- a. LA R.S. 30:2025 provides for punishment of any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit.
- b. LA R.S. 30:2076.2 provides for penalties for any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or non compliance.

8. Additional Monitoring by the Permittee

If the Permittee monitors any pollutant more frequently than required by the permit using test procedures approved under 40 CFR Part 136 (See LAC 33:IX.4901) or, in the case of sludge use and disposal, approved under 40 CFR Part 136 (See LAC 33:IX.4901) unless otherwise specified in 40 CFR Part 503, or as specified in the permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the state administrative authority.

9. Averaging of Measurements

Calculations for all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified by the state administrative authority in the permit.

10. Laboratory Accreditation

- a. LAC 33:1.Subpart 3, Chapters 45-59 provide requirements for an accreditation program specifically applicable to commercial laboratories, wherever located, that provide chemical analyses, analytical results, or other test data to the department, by contract or by agreement, and the data is:
 - (1) Submitted on behalf of any facility, as defined in R.S.30:2004;
 - (2) Required as part of any permit application;
 - (3) Required by order of the department;
 - (4) Required to be included on any monitoring reports submitted to the department;
 - (5) Required to be submitted by contractor
 - (6) Otherwise required by department regulations.

Page 8 of 18

b. The department laboratory accreditation program, Louisiana Environmental Laboratory Accreditation Program (LELAP) is designed to ensure the accuracy, precision, and reliability of the data generated, as well as the use of department-approved methodologies in generation of that data. Laboratory data generated by commercial environmental laboratories that are not (LELAP) accredited will not be accepted by the department. Retesting of analysis will be required by an accredited commercial laboratory.

Where retesting of effluent is not possible (i.e. data reported on DMRs for prior month's sampling), the data generated will be considered invalid and in violation of the LPDES permit.

c. Regulations on the Louisiana Environmental Laboratory Accreditation Program and a list of labs that have applied for accreditation are available on the department website located under DIVISIONS > LABORATORY SERVICES at the following link:

http://www.deg.louisiana.gov

Questions concerning the program may be directed to (225) 219-9800.

SECTION D. REPORTING REQUIREMENTS

1. Facility Changes

The permittee shall give notice to the state administrative authority as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required only when:

- a. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR 122.29(b); or
- b. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements under LAC 33:IX.2703.A.1.
- c. <u>For Municipal Permits</u>. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to Section 301, or 306 of the CWA if it were directly discharging those pollutants; and any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit. In no case are any new connections, increased flows, or significant changes in influent quality permitted that will cause violation of the effluent limitations specified herein.

2. Anticipated Noncompliance

The permittee shall give advance notice to the state administrative authority of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.

3. Transfers

This permit is not transferable to any person except after notice to the state administrative authority. The state administrative authority may require modification or revocation and reissuance of the permit to change the name of the permittee and incorporate such other requirements as may be necessary under the Clean Water Act or the Louisiana Environmental Quality Act. (See LAC 33:IX.2901; in some cases, modification or revocation and reissuance is mandatory.)

A permit may be transferred by the permittee to a new owner or operator only if the permit has been modified or revoked and reissued (under LAC 33:IX.2903, A.2.b), or a minor modification made (under LAC 33:IX.2905) to identify the new permittee and incorporate such other requirements as may be necessary under the Clean Water Act and the Louisiana Environmental Quality Act.

4. Monitoring Reports

Monitoring results shall be reported at the intervals and in the form specified in Part I or Part II of this permit.

The permittee shall submit properly completed Discharge Monitoring Reports (DMRs) on the form specified in the permit. Preprinted DMRs are provided to majors/92-500's and other designated facilities. Please contact the Permit Compliance Unit concerning preprints. Self-generated DMRs must be pre-approved by the Permit Compliance Unit prior to submittal. Self-generated DMRs are approved on an individual basis. Requests for approval of self-generated DMRs should be submitted to:

Supervisor, Permit Compliance Unit Office of Environmental Compliance Post Office Box 4312 Baton Rouge, LA 70821-4312

Copies of blank DMR templates, plus instructions for completing them, and EPA's LPDES Reporting Handbook are available at the department website located at:

http://www.deq.louislana.gov/portal/Default.aspx?tabid=2276

5. Compliance Schedules

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date.

6. Requirements for Notification

a. Emergency Notification

As required by LAC 33.1.3915, in the event of an unauthorized discharge that does cause an emergency condition, the discharger shall notify the hotline (DPS 24-hour Louisiana Emergency Hazardous Materials Hotline) by telephone at (225) 925-6595 (collect calls accepted 24 hours a day) immediately (a reasonable period of time after taking prompt measures to determine the nature, quantity, and potential off-site impact of a release, considering the exigency of the circumstances), but in no case later than one hour after learning of the discharge. (An emergency condition is any condition which could reasonably be expected to endanger the health and safety of the public, cause significant adverse impact to the land, water, or air environment, or cause severe damage to property.) Notification required by this section will be made regardless of the amount of discharge. Prompt Notification Procedures are listed in Section D.6.c. of these standard conditions.

A written report shall be provided within seven calendar days after the notification. The report shall contain the information listed in Section D.6.d. of these standard conditions and any additional information in LAC 33:1,3925.B.

b. Prompt Notification

As required by LAC 33:I.3917, in the event of an unauthorized discharge that exceeds a reportable quantity specified in LAC 33:I.Subchapter E, but does not cause an emergency condition, the discharger shall promptly notify the department within 24 hours after learning of the discharge. Notification should be made to the Office of Environmental Compliance, Surveillance Division Single Point of Contact (SPOC) in accordance with LAC 33:I.3923.

In accordance with LAC 33:1.3923, prompt notification shall be provided within a time frame not to exceed 24 hours and shall be given to the Office of Environmental Compliance, Surveillance Division Single Point of Contact (SPOC) as follows:

(1) by the Online Incident Reporting screens found at http://www3.deg.louisiana.gov/surveillance/irf/forms/;or

- (2) by e-mail utilizing the Incident Report Form and instructions found at http://www.deq.louisiana.gov/portal/Default.aspx?tabid=279;or
- (3) by telephone at (225) 219-3640 during office hours, or (225) 342-1234 after hours and on weekends and holidays.
- c. <u>Content of Prompt Notifications</u>. The following guidelines will be utilized as appropriate, based on the conditions and circumstances surrounding any unauthorized discharge, to provide relevant information regarding the nature of the discharge:
 - the name of the person making the notification and the telephone number where any return calls from response agencies can be placed;
 - (2) the name and location of the facility or site where the unauthorized discharge is imminent or has occurred, using common landmarks. In the event of an incident involving transport, include the name and address of the transporter and generator;
 - (3) the date and time the incident began and ended, or the estimated time of continuation if the discharge is continuing;
 - (4) the extent of any injuries and identification of any known personnel hazards that response agencies may face;
 - (5) the common or scientific chemical name, the U.S. Department of Transportation hazard classification, and the best estimate of amounts of any and all discharged pollutants;
 - (6) a brief description of the incident sufficient to allow response agencies to formulate their level and extent of response activity.
- d. Written Notification Procedures. Written reports for any unauthorized discharge that requires notification under Section D.6.a. or 6.b., or shall be submitted by the discharger to the Office of Environmental Compliance, Surveillance Division SPOC in accordance with LAC 33:IX.3925 within seven calendar days after the notification required by D.6.a. or 6.b., unless otherwise provided for in a valid permit or other department regulation. Written notification reports shall include, but not be limited to, the following information:
 - (1) the name, address, telephone number, Agency Interest (AI) number (number assigned by the department) if applicable, and any other applicable identification numbers of the person, company, or other party who is filing the written report, and specific identification that the report is the written follow-up report required by this section;
 - (2) the time and date of prompt notification, the state official contacted when reporting, the name of person making that notification, and identification of the site or facility, vessel, transport vehicle, or storage area from which the unauthorized discharge occurred;
 - (3) date(s), time(s), and duration of the unauthorized discharge and, if not corrected, the anticipated time it is expected to continue;
 - (4) details of the circumstances (unauthorized discharge description and root cause) and events leading to any unauthorized discharge, including incidents of loss of sources of radiation, and if the release point is subject to a permit:
 - (a) the current permitted limit for the pollutant(s) released; and
 - (b) the permitted release point/outfall ID.
 - (5) the common or scientific chemical name of each specific pollutant that was released as the result of an unauthorized discharge, including the CAS number and U.S. Department of Transportation hazard classification, and the best estimate of amounts of any and all released pollutants (total amount of each compound expressed in pounds, including calculations);

- (6) a statement of the actual or probable fate or disposition of the pollutant or source of radiation and what off-site impact resulted;
- (7) remedial actions taken, or to be taken, to stop unauthorized discharges or to recover pollutants or sources of radiation.
- (8) Written notification reports shall be submitted to the Office of Environmental Compliance, Surveillance Division SPOC by mail or fax. The transmittal envelope and report or fax cover page and report should be clearly marked "UNAUTHORIZED DISCHARGE NOTIFICATION REPORT."

Please see LAC 33:1.3925.B for additional written notification procedures.

- e. <u>Twenty-four Hour Reporting.</u> The permittee shall report any noncompliance which may endanger human health or the environment. Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within five days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and; steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance. The following shall be included as information which must be reported within 24hours:
 - (1) Any unanticipated bypass which exceeds any effluent limitation in the permit (see LAC 33:IX.2701.M.3.b.);
 - Any upset which exceeds any effluent limitation in the permit;
 - (3) Violation of a maximum daily discharge limitation for any of the pollutants listed by the state administrative authority in Part II of the permit to be reported within 24 hours (LAC 33:1X.2707.G.).

7. -Other Noncompliance

The permittee shall report all instances of noncompliance not reported under Section D.4., 5., and 6., at the time monitoring reports are submitted. The reports shall contain the information listed in Section D.6.e.

8. Other Information

Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the state administrative authority, it shall promptly submit such facts or information.

9. Discharges of Toxic Substances

In addition to the reporting requirements under Section D.1-8, all existing manufacturing, commercial, mining, and silvicultural dischargers must notify the Office of Environmental Services, Water Permits Division as soon as they know or have reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant:
 - listed at LAC 33:IX.7107, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following notification levels:

(1) One hundred micrograms per liter (100 µg/L);

- (2) Two hundred micrograms per liter (200 μg/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μg/L) for 2,4 -dinitro-phenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
- (3) Five (5) times the maximum concentration value reported for that pollutant in the permit application in accordance with LAC33:IX.2501.G.7; or
- (4) The level established by the state administrative authority in accordance with LAC 33:IX.2707.F; or
- ii. which exceeds the reportable quantity levels for pollutants at LAC 33:1. Subchapter E.

Page 12 of 18

- b. That any activity has occurred or will occur which would result in any discharge, on a non-routine or infrequent basis, of a toxic pollutant:
 - listed at LAC 33:IX.7107, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - (1) Five hundred micrograms per liter (500 µg/L);
 - (2) One milligram per liter (1 mg/L) for antimony;
 - (3) Ten (10) times the maximum concentration value reported for that pollutant in the permit application in accordance with LAC 33:IX.2501.G.7; or
 - (4) The level established by the state administrative authority in accordance with LAC 33:IX.2707.F; or
 - which exceeds the reportable quantity levels for pollutants at LAC 33:1. Subchapter E.

10. Signatory Requirements

All applications, reports, or information submitted to the state administrative authority shall be signed and certified.

- a. All permit applications shall be signed as follows:
 - (1) For a corporation by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:
 - (a) A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision making functions for the corporation; or,
 - (b) The manager of one or more manufacturing, production, or operating facilities, provided: the manager is authorized to make management decisions that govern the operation of the regulated facility, including having the explicit or implicit duty of making major capital investment recommendations and initiating and directing other comprehensive measures to ensure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and the authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.

NOTE: DEQ does not require specific assignments or delegations of authority to responsible corporate officers identified in Section D.10.a.(1)(a). The agency will presume that these responsible corporate officers have the requisite authority to sign permit applications unless the corporation has notified the state administrative authority to the contrary. Corporate procedures governing authority to sign permit applications may provide for assignment or delegation to applicable corporate positions under Section D.10.a.(1)(b) rather than to specific individuals.

- (2) For a partnership or sole proprietorship by a general partner or the proprietor, respectively; or
- (3) For a municipality, state, federal, or other public agency by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a federal agency includes:
 - (a) The chief executive officer of the agency, or
 - (b) A senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of EPA).
- b. All reports required by permits and other information requested by the state administrative authority shall be signed by a person described in Section D.10.a., or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - The authorization is made in writing by a person described in Section D.10.a. of these standard conditions;

- (2) The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company, (a duly authorized representative may thus be either a named individual or an individual occupying a named position; and.
- (3) The written authorization is submitted to the state administrative authority.
- c. <u>Changes to authorization</u>. If an authorization under Section D.10.b. is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of Section D.10.b. must be submitted to the state administrative authority prior to or together with any reports, information, or applications to be signed by an authorized representative.
- d. <u>Certification</u>. Any person signing a document under Section D.10. a. or b. above, shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

11. Availability of Reports

All recorded information (completed permit application forms, fact sheets, draft permits, or any public document) not classified as confidential information under R.S. 30:2030(A) and 30:2074(D) and designated as such in accordance with these regulations (LAC 33:IX.2323 and LAC 33:IX.6503) shall be made available to the public for inspection and copying during normal working hours in accordance with the Public Records Act, R.S. 44:1 et seq.

Claims of confidentiality for the following will be denied:

- a. The name and address of any permit applicant or permittee;
- b. Permit applications, permits, and effluent data.
- c. Information required by LPDES application forms provided by the state administrative authority under LAC 33:IX.2501 may not be claimed confidential. This includes information submitted on the forms themselves and any attachments used to supply information required by the forms.

SECTION E. PENALTIES FOR VIOLATIONS OF PERMIT CONDITION

1. Criminal

a. Negligent Violations

The Louisiana Revised Statutes LA. R. S. 30:2076.2 provides that any person who negligently violates any provision of the LPDES, or any order issued by the secretary under the LPDES, or any permit condition or limitation implementing any such provision in a permit issued under the LPDES by the secretary, or any requirement imposed in a pretreatment program approved under the LPDES is subject to a fine of not less than \$2,500 nor more than \$25,000 per day of violation, or by imprisonment for not more than 1 year, or both. If a conviction of a person is for a violation committed after a first conviction of such person, he shall be subject to a fine of not more than \$50,000 per day of violation, or imprisonment of not more than two years, or both.

b. Knowing Violations

The Louisiana Revised Statutes LA. R. S. 30:2076.2 provides that any person who knowingly violates any provision of the LPDES, or any permit condition or limitation implementing any such provisions in a permit issued under the LPDES, or any requirement imposed in a pretreatment program approved under

form_7027_r06 12/17/08

Page 14 of 18

the LPDES is subject to a fine of not less than \$5,000 nor more than \$50,000 per day of violation, or imprisonment for not more than 3 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person, he shall be subject to a fine of not more than \$100,000 per day of violation, or imprisonment of not more than six years, or both.

c. Knowing Endangerment

The Louisiana Revised Statutes LA. R. S. 30:2076.2 provides that any person who knowingly violates any provision of the LPDES, or any order issued by the secretary under the LPDES, or any permit condition or limitation implementing any of such provisions in a permit issued under the LPDES by the secretary, and who knows at that time that he thereby places another person in imminent danger of death or serious bodily injury, shall, upon conviction, be subject to a fine of not more than \$250,000, or by imprisonment for not more than 15 years, or both. A person which is an organization shall, upon conviction of violating this Paragraph, be subject to a fine of not more than one million dollars. If a conviction of a person is for a violation committed after a first conviction of such person under this Paragraph, the maximum punishment shall be doubled with respect to both fine and imprisonment.

d. False Statements

The Louisiana Revised Statutes LA. R. S. 30:2076.2 provides that any person who knowingly makes any false material statement, representation, or certification in any application, record, report, plan, or other document filed or required to be maintained under the LPDES or who knowingly falsifies, tampers with, or renders inaccurate, any monitoring device or method required to be maintained under the LPDES, shall, upon conviction, be subject to a fine of not more than \$10,000, or imprisonment for not more than 2 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this Subsection, he shall be subject to a fine of not more than \$20,000 per day of violation, or imprisonment of not more than 4 years, or both.

2. Civil Penalties

The Louisiana Revised Statutes LA. R. S. 30:2025 provides that any person found to be in violation of any requirement of this Subtitle may be liable for a civil penalty, to be assessed by the secretary, an assistant secretary, or the court, of not more than the cost to the state of any response action made necessary by such violation which is not voluntarily paid by the violator, and a penalty of not more than \$32,500 for each day of violation. However, when any such violation is done intentionally, willfully, or knowingly, or results in a discharge or disposal which causes irreparable or severe damage to the environment or if the substance discharged is one which endangers human life or health, such person may be liable for an additional penalty of not more than one million dollars.

(PLEASE NOTE: These penalties are listed in their entirety in Subtitle II of Title 30 of the Louisiana Revised Statutes.)

SECTION F. DEFINITIONS

All definitions contained in Section 502 of the Clean Water Act shall apply to this permit and are incorporated herein by reference. Additional definitions of words or phrases used in this permit are as follows:

- Clean Water Act (CWA) means the Clean Water Act (formerly referred to as the Federal Water Pollution Control Act or the Federal Water Pollution Control Act Amendments of 1972) Pub.L. 92-500, as amended by Pub.L. 95-217, Pub.L. 95-576, Pub.L. 96-483 and Pub.L. 97-117, 33 U.S.C. 1251 et. seq.).
- Accreditation means the formal recognition by the department of a laboratory's competence wherein specific
 tests or types of tests can be accurately and successfully performed in compliance with all minimum
 requirements set forth in the regulations regarding laboratory accreditation.
- 3. <u>Administrator</u> means the Administrator of the U.S. Environmental Protection Agency, or an authorized representative.

- 4. <u>Applicable Standards and Limitations</u> means all state, interstate and federal standards and limitations to which a discharge is subject under the Clean Water Act, including, effluent limitations, water quality standards of performance, toxic effluent standards or prohibitions, best management practices, and pretreatment standards under Sections 301, 302, 303, 304, 306, 307, 308 and 403.
- Applicable water quality standards means all water quality standards to which a discharge is subject under the Clean Water Act.
- 6. <u>Commercial Laboratory</u> means any laboratory, wherever located, that performs analyses or tests for third parties for a fee or other compensation and provides chemical analyses, analytical results, or other test data to the department. The term commercial laboratory does not include laboratories accredited by the Louisiana Department of Health and Hospitals in accordance with R.S.49:1001 et seg.
- 7. <u>Daily Discharge</u> means the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day. Daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample.
- 8. <u>Daily Maximum</u> discharge limitation means the highest allowable "daily discharge".
- 9. <u>Director</u> means the U.S. Environmental Protection Agency Regional Administrator, or the state administrative authority, or an authorized representative.
- 10. <u>Domestic septage</u> means either liquid or solid material removed from a septic tank, cesspool, portable toilet, Type III marine sanitation device, or similar treatment works that receives only domestic sewage. Domestic septage does not include liquid or solid material removed from a septic tank, cesspool, or similar treatment works that receives either commercial wastewater or industrial wastewater and does not include grease removed from grease trap at a restaurant.
- 11. <u>Domestic sewage</u> means waste and wastewater from humans, or household operations that is discharged to or otherwise enters a treatment works.
- 12. Environmental Protection Agency or (EPA) means the U.S. Environmental Protection Agency.
- 13. <u>Grab sample</u> means an individual sample collected over a period of time not exceeding 15 minutes, unless more time is needed to collect an adequate sample, and is representative of the discharge.
- 14. <u>Industrial user</u> means a nondomestic discharger, as identified in 40 CFR 403, introducing pollutants to a publicly owned treatment works.
- 15. LEQA means the Louisiana Environmental Quality Act.
- 16. Louisiana Pollutant Discharge Elimination System (LPDES) means those portions of the Louisiana Environmental Quality Act and the Louisiana Water Control Law and all regulations promulgated under their authority which are deemed equivalent to the National Pollutant Discharge Elimination System (NPDES) under the Clean Water Act in accordance with Section 402 of the Clean Water Act and all applicable federal regulations.

17. Monthly Average, other than for fecal coliform bacteria, discharge limitations are calculated as the sum of all "daily discharge(s)" measured during a calendar month divided by the number of "daily discharge(s)" measured during that month. When the permit establishes monthly average concentration effluent limitations or conditions, and flow is measured as continuous record or with a totalizer, the monthly average concentration means the arithmetic average (weighted by flow) of all "daily discharge(s)" of concentration determined during the calendar month where C = daily discharge concentration, F = daily flow and n = number of daily samples; monthly average discharge =

$$\frac{C_1F_1 + C_2F_2 + ... + C_nF_n}{F_1 + F_2 + ... + F_n}$$

When the permit establishes monthly average concentration effluent limitations or conditions, and the flow is not measured as a continuous record, then the monthly average concentration means the arithmetic average of all "daily discharge(s)" of concentration determined during the calendar month.

The monthly average for fecal coliform bacteria is the geometric mean of the values for all effluent samples collected during a catendar month.

- 18. <u>National Pollutant Discharge Elimination System (NPDES)</u> means the national program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under Sections 307, 318, 402, and 405 of the Clean Water Act.
- 19. <u>Severe property damage</u> means substantial physical damage to property, damage to the treatment facilities that causes them to become inoperable, or substantial and permanent loss of natural resources that can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- 20. Sewage sludge means a solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in a treatment works. Sewage sludge includes, but is not limited to, domestic septage; scum or solids removed in primary, secondary, or advanced wastewater treatment processes; portable toilet pumpings, type III marine sanitation device pumpings (33 CFR part 159); and a material derived from sewage sludge. Sewage sludge does not include ash generated during the firing of sewage sludge in a sewage sludge-incinerator or grit and screenings generated during preliminary treatment of domestic sewage in a treatment works.
- Stormwater Runoff—aqueous surface runoff including any soluble or suspended material mobilized by naturally occurring precipitation events.
- 22. <u>Surface Water</u>: all lakes, bays, rivers, streams, springs, ponds, impounding reservoirs, wetlands, swamps, marshes, water sources, drainage systems and other surface water, natural or artificial, public or private within the state or under its jurisdiction that are not part of a treatment system allowed by state law, regulation, or permit.
- 23. <u>Treatment works</u> means any devices and systems used in the storage, treatment, recycling and reclamation of municipal sewage and industrial wastes of a liquid nature to implement Section 201 of the Clean Water Act, or necessary to recycle or reuse water at the most economical cost over the estimated life of the works, including intercepting sewers, sewage collection systems, pumping, power and other equipment, and their appurtenances, extension, improvement, remodeling, additions, and alterations thereof. (See Part 212 of the Clean Water Act)
- 24. For fecal coliform bacteria, a sample consists of one effluent grab portion collected during a 24-hour period at peak loads.
- 25. The term MGD shall mean million gallons per day.
- 26. The term GPD shall mean gallons per day.

form_7027_r06 12/17/08

Page 17 of 18

- 27. The term mg/L shall mean milligrams per liter or parts per million (ppm).
- 28. The term <u>SPC</u> shall mean Spill Prevention and Control. Plan covering the release of pollutants as defined by the Louisiana Administrative Code (LAC 33:IX.9).
- 29. The term <u>SPCC</u> shall mean Spill Prevention Control and Countermeasures Plan. Plan covering the release of pollutants as defined in 40 CFR Part 112.
- 30. The term ug/L shall mean micrograms per liter or parts per billion (ppb).
- 31. The term ng/L shall mean nanograms per liter or parts per trillion (ppt).
- Visible Sheen: a silvery or metallic sheen, gloss, or increased reflectivity; visual color; or iridescence on the water surface.
- Wastewater—liquid waste resulting from commercial, municipal, private, or industrial processes. Wastewater includes, but is not limited to, cooling and condensing waters, sanitary sewage, industrial waste, and contaminated rainwater runoff.
- 34. Waters of the State: for the purposes of the Louisiana Pollutant Discharge Elimination system, all surface waters within the state of Louisiana and, on the coastline of Louisiana and the Gulf of Mexico, all surface waters extending there from three miles into the Gulf of Mexico. For purposes of the Louisiana Pollutant Discharge Elimination System, this includes all surface waters which are subject to the ebb and flow of the tide, lakes, rivers, streams, (including intermittent streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, natural ponds, impoundments of waters within the state of Louisiana otherwise defined as "waters of the United States" in 40 CFR 122.2, and tributaries of all such waters. "Waters of the state" does not include waste treatment systems, including treatment ponds or lagoons designed to meet the requirements of the Clean Water Act, 33 U.S.C. 1251 et seq.
- 35. Weekly average, other than for fecal coliform bacteria, is the highest allowable arithmetic mean of the daily discharges over a calendar week, calculated as the sum of all "daily discharge(s)" measured during a calendar week divided by the number of "daily discharge(s)" measured during that week. When the permit establishes weekly average concentration effluent limitations or conditions, and flow is measured as continuous record or with a totalizer, the weekly average concentration means the arithmetic average (weighted by flow) of all "daily discharge(s)" of concentration determined during the calendar week where C = daily discharge concentration, F = daily flow and n = number of daily samples; weekly average discharge

$$= \frac{C_1F_1 + C_2F_2 + ... + C_nF_n}{F_1 + F_2 + ... + F_n}$$

When the permit establishes weekly average concentration effluent limitations or conditions, and the flow is not measured as a continuous record, then the weekly average concentration means the arithmetic average of all "daily discharge(s)" of concentration determined during the calendar week.

The weekly average for fecal coliform bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.

- 36. Sanitary Wastewater Term(s):
 - a. 3-hour composite sample consists of three effluent portions collected no closer together than one hour (with the first portion collected no earlier than 10:00 a.m.) over the 3-hour period and composited according to flow, or a sample continuously collected in proportion to flow over the 3-hour period.
 - b. <u>6-hour composite sample</u> consists of six effluent portions collected no closer together than one hour (with the first portion collected no earlier than 10:00 a.m.) over the 6-hour period and composited according to flow, or a sample continuously collected in proportion to flow over the 6-hour period.

Page 18 of 18

- c.12-hour composite sample consists of 12 effluent portions collected no closer together than one hour over the 12-hour period and composited according to flow, or a sample continuously collected in proportion to flow over the 12-hour period. The daily sampling intervals shall include the highest flow periods.
- d. <u>24-hour composite sample</u> consists of a minimum of 12 effluent portions collected at equal time intervals over the 24-hour period and combined proportional to flow or a sample continuously collected in proportion to flow over the 24-hour period.

Attachment A

Attachment A

Internal Outfall 511 (2501)
Technology Limitations for BOD₅ and TSS

LPDES Permit LA0003301 Al No. 1409

Internal Outfall 511 (2501)

BODs and TSS Permit Limits

Concentration Factors from 40 CFR 414

Subpart D

Production Percentage from Subpart D - 45%	Concentration Factors			
Parameter	Daily Maximum (mg/L)	Monthly Average (mg/L)		
BODς	64	24		
TSS	130	40		

Concentration Factors from 40 CFR 414 Subpart H

Production Percentage from Subpart H - 55%	Concentral	Concentration Factors				
Parameter	Daily Maximum (mg/L)	Monthly Average (mg/L)				
BOD ₅	120	45				
TSS	183	57				

Internal Outfall 511 (2501)						
Parameter	Daily Maximum (mg/L)	Monthly Average (mg/L)				
8OD₅	94.8	35.6				
TSS	159,2	49.4				